Modern deep neural network training is based on mini-batch stochastic gradient optimization. While using extensive mini-batches improves the computational parallelism, the small batch training proved that it delivers improved generalization performance and allows a significantly smaller memory, which might also improve machine throughput. However, mini-batch size and characteristics, a key factor for training deep neural networks, has not been sufficiently investigated in training correlated group features and looping with highly complex ones.
View Article and Find Full Text PDFBackground: The roles of antibody and antigen are indispensable in targeted diagnosis, therapy, and biomedical discovery. On top of that, massive numbers of new scientific articles about antibodies and/or antigens are published each year, which is a precious knowledge resource but has yet been exploited to its full potential. We, therefore, aim to develop a biomedical natural language processing tool that can automatically identify antibody and antigen entities from articles.
View Article and Find Full Text PDFBackground: Single-domain antibodies or nanobodies have recently attracted much attention in research and applications because of their great potential and advantage over conventional antibodies. However, isolation of candidate nanobodies in the lab has been costly and time-consuming. Screening of leading nanobody candidates through synthetic libraries is a promising alternative, but it requires prior knowledge to control the diversity of the complementarity-determining regions (CDRs) while still maintaining functionality.
View Article and Find Full Text PDF