Publications by authors named "Viera Kutna"

Functional and molecular alterations in the cerebellum are among the most widely recognised associates of autism spectrum disorders (ASD). As a critical computational hub of the brain, the cerebellum controls and coordinates a range of motor, affective and cognitive processes. Despite well-described circuits and integrative mechanisms, specific changes that underlie cerebellar impairments in ASD remain elusive.

View Article and Find Full Text PDF

The heterogeneity of the glioma subtype glioblastoma multiforme (GBM) challenges effective neuropathological treatment. The reliance on in vitro studies and xenografted animal models to simulate human GBM has proven ineffective. Currently, a dearth of knowledge exists regarding the applicability of cell line biomolecules to the realm of GBM pathogenesis.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental condition causing a range of social and communication impairments. Although the role of multiple genes and environmental factors has been reported, the effects of the interplay between genes and environment on the onset and progression of the disease remains elusive. We housed wild-type (Tsc2+/+) and tuberous sclerosis 2 deficient (Tsc2+/-) Eker rats (ASD model) in individually ventilated cages or enriched conditions and conducted a series of behavioural tests followed by the histochemical analysis of dendritic spines and plasticity in three age groups (days 45, 90 and 365).

View Article and Find Full Text PDF

The cerebellum hosts more than half of all neurons of the human brain, with their organized activity playing a key role in coordinating motor functions. Cerebellar activity has also been implicated in the control of speech, communication, and social behavior, which are compromised in autism spectrum disorders (ASD). Despite major research advances, there is a shortage of mechanistic data relating cellular and molecular changes in the cerebellum to autistic behavior.

View Article and Find Full Text PDF

The autoimmune condition, Celiac Disease (CeD), displays broad clinical symptoms due to gluten exposure. Its genetic association with DQ variants in the human leukocyte antigen (HLA) system has been recognised. Monocyte-derived mature dendritic cells (MoDCs) present gluten peptides through HLA-DQ and co-stimulatory molecules to T lymphocytes, eliciting a cytokine-rich microenvironment.

View Article and Find Full Text PDF

Notwithstanding major advances in psychotherapeutics, their efficacy and specificity remain limited. The slow onset of beneficial outcomes and numerous adverse effects of widely used medications remain of chief concern, warranting in-depth studies. The majority of frontline therapies are thought to enhance the endogenous monoaminergic drive, to initiate a cascade of molecular events leading to lasting functional and structural plasticity.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is a primary brain cancer of poor prognosis, with existing treatments remaining essentially palliative. Current GBM therapy fails due to rapid reappearance of the heterogeneous neoplasm, with models suggesting that the recurrent growth is from treatment-resistant glioblastoma stem-like cells (GSCs). Whether GSCs depend on survival/proliferative cues from their surrounding microenvironmental niche, particularly surrounding the leading edge after treatment remains unknown.

View Article and Find Full Text PDF

Maternal immune activation (MIA) during pregnancy represents an important environmental factor in the etiology of schizophrenia and autism spectrum disorders (ASD). Our goal was to investigate the impacts of MIA on the brain and behavior of adolescent and adult offspring, as a rat model of these neurodevelopmental disorders. We injected bacterial lipopolysaccharide (LPS, 1 mg/kg) to pregnant Wistar dams from gestational day 7, every other day, up to delivery.

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is a dominant autosomal genetic disorder caused by loss-of-function mutations in TSC1 and TSC2, which lead to constitutive activation of the mammalian target of rapamycin C1 (mTORC1) with its decoupling from regulatory inputs. Because mTORC1 integrates an array of molecular signals controlling protein synthesis and energy metabolism, its unrestrained activation inflates cell growth and division, resulting in the development of benign tumors in the brain and other organs. In humans, brain malformations typically manifest through a range of neuropsychiatric symptoms, among which mental retardation, intellectual disabilities with signs of autism, and refractory seizures, which are the most prominent.

View Article and Find Full Text PDF

Tuberous sclerosis complex (TSC) is a genetic disorder characterized by frequent noncancerous neoplasia in the brain, which can induce a range of severe neuropsychiatric symptoms in humans, resulting from out of control tissue growth. The causative spontaneous loss-of-function mutations have been also identified in rats. Herein, we studied histopathological and molecular changes in brain lesions of the Eker rat model carrying germline mutation of the tsc2 gene, predisposed to multiple neoplasias.

View Article and Find Full Text PDF

Background: CLARITY is a method of rendering postmortem brain tissue transparent using acrylamide-based hydrogels so that this tissue could be further used for immunohistochemistry, molecular biology, or gross anatomical studies. Published papers using the CLARITY method have included studies on human brains suffering from Alzheimer's disease using mouse spinal cords as animal models for multiple sclerosis.

Methods: We modified the original design of the Chung CLARITY system by altering the electrophoretic flow-through cell, the shape of the platinum electrophoresis electrodes and their positions, as well as the cooling and recirculation system, so that it provided a greater effect and can be used in any laboratory.

View Article and Find Full Text PDF

In rodents, peroral (p.o.) administration of 5-bromo-2'-deoxyuridine (BrdU) dissolved in drinking water is a widely used method for labeling newly formed cells over a prolonged time-period.

View Article and Find Full Text PDF

Two waves of oligodendrogenesis in the ventricular zone of the spinal cord (SC-VZ) during rat development, which take place between embryonic days 14 and 18 (E14-E18) and E20-E21, have been described. In the VZ of the brain, unlike the SC-VZ, a third wave of oligodendrogenesis occurs during the first weeks of postnatal development. Using immunofluorescence staining of intact rat SC tissue, we noticed the presence of small numbers of Olig2(+) /Sox-10(+) cells inside the lining of the central canal (CC) during postnatal development and adulthood.

View Article and Find Full Text PDF

Despite the abundance of cerebrospinal fluid-contacting neurons (CSF-cNs) lining the central canal of the spinal cord of mammals, little information is known regarding the phenotype and fate of these cells during development and in adulthood. Using immunofluorescence of spinal cord tissue of rats from the first postnatal day (P1) until the end of the 5th postnatal week (P36), we observed that these neurons show both immature (doublecortin+, β-III-tubulin+, neurofilament 200 kDa-) and more mature (weak NeuN+, P2X2+, GAD65+) characteristics during the first postnatal weeks. Because of the gradually decreasing number of CSF-cNs in the central canal lining during development, we were also interested in the migration potential of these cells.

View Article and Find Full Text PDF