Publications by authors named "Vieland V"

Next-generation sequencing has led to an explosion of genetic findings for many rare diseases. However, most of the variants identified are very rare and were also identified in small pedigrees, which creates challenges in terms of penetrance estimation and translation into genetic counselling in the setting of cascade testing. We use simulations to show that for a rare (dominant) disorder where a variant is identified in a small number of small pedigrees, the penetrance estimate can both have large uncertainty and be drastically inflated, due to underlying ascertainment bias.

View Article and Find Full Text PDF

The major determinant of disease severity in Duchenne muscular dystrophy (DMD) or milder Becker muscular dystrophy (BMD) is whether the dystrophin gene (DMD) mutation truncates the mRNA reading frame or allows expression of a partially functional protein. However, even in the complete absence of dystrophin, variability in disease severity is observed, and candidate gene studies have implicated several genes as modifiers. Here we present the largest genome-wide search to date for loci influencing severity in N = 419 DMD patients.

View Article and Find Full Text PDF

In earlier work, we have developed and evaluated an alternative approach to the analysis of GWAS data, based on a statistic called the PPLD. More recently, motivated by a GWAS for genetic modifiers of the X-linked Mendelian disorder Duchenne Muscular Dystrophy (DMD), we adapted the PPLD for application to time-to-event (TE) phenotypes. Because DMD itself is relatively rare, this is a setting in which the very large sample sizes generally assembled for GWAS are simply not attainable.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a relatively common childhood onset neurodevelopmental disorder with a complex genetic etiology. While progress has been made in identifying the de novo mutational landscape of ASD, the genetic factors that underpin the ASD's tendency to run in families are not well understood. In this study, nine extended pedigrees each with three or more individuals with ASD, and others with a lesser autism phenotype, were phenotyped and genotyped in an attempt to identify heritable copy number variants (CNVs).

View Article and Find Full Text PDF

In linear regression, a residual measures how far a subject's observation is from expectation; in survival analysis, a subject's Martingale or deviance residual is sometimes interpreted similarly. Here we consider ways in which a linear regression-like interpretation is not appropriate for Martingale and deviance residuals, and we develop a novel time-to-event residual which does have a linear regression-like interpretation. We illustrate the utility of this new residual via simulation of a time-to-event genome-wide association study, motivated by a real study seeking genetic modifiers of Duchenne Muscular Dystrophy.

View Article and Find Full Text PDF

Objective: Duchenne muscular dystrophy (DMD) is a severe X-linked recessive disease caused by loss-of-function dystrophin (DMD) mutations in boys, who typically suffer loss of ambulation by age 12. Previously, we reported that coding variants in latent transforming growth factor beta (TGFβ)-binding protein 4 (LTBP4) were associated with reduced TGFβ signaling and prolonged ambulation (p = 1.0 × 10 ) in DMD patients; this result was subsequently replicated by other groups.

View Article and Find Full Text PDF

Background: Although several genetic variants for autism spectrum disorder (ASD) have now been identified, these largely occur sporadically or are de novo. Much less progress has been made in identifying inherited variants, even though the disorder itself is familial in the majority of cases. The objective of this study was to identify chromosomal regions that harbor inherited variants increasing the risk for ASD using an approach that examined both ASD and the broad autism phenotype (BAP) among a unique sample of extended pedigrees.

View Article and Find Full Text PDF

Despite much progress, few genetic findings for schizophrenia have been assessed by functional validation experiments at the molecular level. We previously reported evidence for genetic linkage of broadly defined schizophrenia to chromosome 17q25 in a sample of 24 multiplex families. 2,002 SNPs under this linkage peak were analyzed for evidence of linkage disequilibrium using the posterior probability of linkage (PPL) framework.

View Article and Find Full Text PDF

Aim: Pulmonary hypertension (PH) develops in 25-40% of bronchopulmonary dysplasia (BPD) patients, substantially increasing mortality. We have previously found that asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide (NO) production, is elevated in patients with BPD-associated PH. ADMA is metabolised by N(ᴳ) ,N(ᴳ) -dimethylarginine dimethylaminohydrolase (DDAH).

View Article and Find Full Text PDF

To realize the full potential of next-generation sequencing, it is important to consider multiple sources of genetic information, including inheritance, association, and bioinformatics. To illustrate the promise of such an approach, we applied our next-generation linkage and association (NGLA) methods to the sequence data of a large 57-member Mexican American family with hypertension. Our results show that OSBPL10--a disease susceptibility gene for dyslipidemia--may also influence systolic blood pressure (SBP).

View Article and Find Full Text PDF

Host-to-host variability with respect to interactions between microorganisms and multicellular hosts are commonly observed in infection and in homeostasis. However, the majority of mechanistic models used to analyze host-microorganism relationships, as well as most of the ecological theories proposed to explain coevolution of hosts and microbes, are based on averages across a host population. By assuming that observed variations are random and independent, these models overlook the role of differences between hosts.

View Article and Find Full Text PDF

Copy number variation has emerged as an important cause of phenotypic variation, particularly in relation to some complex disorders. Autism spectrum disorder (ASD) is one such disorder, in which evidence is emerging for an etiological role for some rare penetrant de novo and rare inherited copy number variants (CNVs). De novo variation, however, does not always explain the familial nature of ASD, leaving a gap in our knowledge concerning the heritable genetic causes of this disorder.

View Article and Find Full Text PDF

Background: There is an urgent need for expanding and enhancing autism spectrum disorder (ASD) samples, in order to better understand causes of ASD.

Methods: In a unique public-private partnership, 13 sites with extensive experience in both the assessment and diagnosis of ASD embarked on an ambitious, 2-year program to collect samples for genetic and phenotypic research and begin analyses on these samples. The program was called The Autism Simplex Collection (TASC).

View Article and Find Full Text PDF

A primary purpose of statistical analysis in genetics is the measurement of the strength of evidence for or against hypotheses. As with any type of measurement, a properly calibrated measurement scale is necessary if we want to be able to meaningfully compare degrees of evidence across genetic data sets, across different types of genetic studies and/or across distinct experimental modalities. In previous papers in this journal and elsewhere, my colleagues and I have argued that geneticists ought to care about the scale on which statistical evidence is measured, and we have proposed the Kelvin temperature scale as a template for a context-independent measurement scale for statistical evidence.

View Article and Find Full Text PDF

Objectives: Linkage analysis can help determine regions of interest in whole-genome sequence studies. However, many linkage studies rely on older microsatellite (MSAT) panels. We set out to determine whether results would change if we regenotyped families using a dense map of SNPs.

View Article and Find Full Text PDF

Aim: To test the hypothesis that there are single-nucleotide polymorphisms (SNPs) in genes of the l-arginine/nitric oxide pathway associated with pulmonary hypertension (PH) in neonates with bronchopulmonary dysplasia (BPD).

Methods: Neonates with BPD were enrolled (n = 140) and clinical characteristics compared between case (BPD + PH) and control (BPD) groups. DNA was isolated from blood leucocytes and assayed for 17 SNPs in l-arginine/nitric oxide pathway genes by Sequenom massarray.

View Article and Find Full Text PDF

A learning health system (LHS) integrates research done in routine care settings, structured data capture during every encounter, and quality improvement processes to rapidly implement advances in new knowledge, all with active and meaningful patient participation. While disease-specific pediatric LHSs have shown tremendous impact on improved clinical outcomes, a national digital architecture to rapidly implement LHSs across multiple pediatric conditions does not exist. PEDSnet is a clinical data research network that provides the infrastructure to support a national pediatric LHS.

View Article and Find Full Text PDF
Article Synopsis
  • Rare copy-number variation (CNV) is a significant risk factor for autism spectrum disorders (ASDs), as shown by the analysis of 2,446 ASD-affected families, revealing higher rates of genic deletions and duplications in affected individuals compared to controls.
  • Affected individuals showed a notable increase in pathogenic CNVs linked to specific ASD and intellectual disability loci, with implications for various neurodevelopmental genes, including CHD2 and SETD5.
  • Additionally, females with ASD had a higher prevalence of potent CNVs and were overrepresented in categories associated with fragile X syndrome, highlighting potential gender-specific factors in CNV that influence ASD.
View Article and Find Full Text PDF

Humans have developed the perception, production and processing of sounds into the art of music. A genetic contribution to these skills of musical aptitude has long been suggested. We performed a genome-wide scan in 76 pedigrees (767 individuals) characterized for the ability to discriminate pitch (SP), duration (ST) and sound patterns (KMT), which are primary capacities for music perception.

View Article and Find Full Text PDF

Human geneticists are increasingly turning to study designs based on very large sample sizes to overcome difficulties in studying complex disorders. This in turn almost always requires multi-site data collection and processing of data through centralized repositories. While such repositories offer many advantages, including the ability to return to previously collected data to apply new analytic techniques, they also have some limitations.

View Article and Find Full Text PDF

Objective: The Combined Analysis of Psychiatric Studies (CAPS) project conducted extensive review and regularization across studies of all schizophrenia linkage data available as of 2011 from the National Institute of Mental Health-funded Center for Collaborative Genomic Studies on Mental Disorders, also known as the Human Genetics Initiative (HGI). The authors reanalyzed the data using statistical methods tailored to accumulation of evidence across multiple, potentially highly heterogeneous, sets of data.

Method: Data were subdivided based on contributing study, major population group, and presence or absence within families of schizophrenia with a substantial affective component.

View Article and Find Full Text PDF

Cell-to-cell variations in protein abundance in clonal cell populations are ubiquitous in living systems. Because protein composition determines responses in individual cells, it stands to reason that the variations themselves are subject to selective pressures. However, the functional role of these cell-to-cell differences is not well understood.

View Article and Find Full Text PDF

Robustness and sensitivity of responses generated by cell signaling networks has been associated with survival and evolvability of organisms. However, existing methods analyzing robustness and sensitivity of signaling networks ignore the experimentally observed cell-to-cell variations of protein abundances and cell functions or contain ad hoc assumptions. We propose and apply a data-driven maximum entropy based method to quantify robustness and sensitivity of Escherichia coli (E.

View Article and Find Full Text PDF

Background: Efforts to uncover the risk genotypes associated with the familial nature of autism spectrum disorder (ASD) have had limited success. The study of extended pedigrees, incorporating additional ASD-related phenotypes into linkage analysis, offers an alternative approach to the search for inherited ASD susceptibility variants that complements traditional methods used to study the genetics of ASD.

Methods: We examined evidence for linkage in 19 extended pedigrees ascertained through ASD cases spread across at least two (and in most cases three) nuclear families.

View Article and Find Full Text PDF

The inositol-phosphate messenger inositol(1,3,4,5)tetrakisphosphate (IP4) is essential for thymocyte positive selection by regulating plasma-membrane association of the protein tyrosine kinase Itk downstream of the T cell receptor (TCR). IP4 can act as a soluble analog of the phosphoinositide 3-kinase (PI3K) membrane lipid product phosphatidylinositol(3,4,5)trisphosphate (PIP3). PIP3 recruits signaling proteins such as Itk to cellular membranes by binding to PH and other domains.

View Article and Find Full Text PDF