Publications by authors named "Vidyanand Sasidharan"

Post-transcriptional regulation has emerged as a key mechanism for regulating stem cell renewal and differentiation, which is essential for understanding tissue regeneration and homeostasis. Poly(A)-binding proteins are a family of RNA-binding proteins that play a vital role in post-transcriptional regulation by controlling mRNA stability and protein synthesis. The involvement of poly(A) binding proteins in a wide range of cellular functions is increasingly being investigated.

View Article and Find Full Text PDF

For hundreds of years, the question of why some organisms can regenerate missing body parts while others cannot has remained poorly understood. This has been due in great part to the inability to genetically, molecularly, and cellularly dissect this problem for most of the history of the field. It has only been in the past 20-30 years that important mechanistic advances have been made in methodologies that introduce loss and gain of gene function in animals that can regenerate.

View Article and Find Full Text PDF

Identifying key cellular events that facilitate stem cell function and tissue organization is crucial for understanding the process of regeneration. Planarians are powerful model system to study regeneration and stem cell (neoblast) function. Here, using planaria, we show that the initial events of regeneration, such as epithelialization and epidermal organization are critically regulated by a novel cytoplasmic poly A-binding protein, SMED-PABPC2.

View Article and Find Full Text PDF

Brain regeneration in planarians is mediated by precise spatiotemporal control of gene expression and is crucial for multiple aspects of neurogenesis. However, the mechanisms underpinning the gene regulation essential for brain regeneration are largely unknown. Here, we investigated the role of the family of microRNAs in planarian brain regeneration.

View Article and Find Full Text PDF
Article Synopsis
  • 3' untranslated regions (UTRs) in eukaryotes are crucial for controlling gene expression after transcription, with their regulation occurring during the processing of pre-mRNA.
  • Using 3P-Seq technology, researchers analyzed the genome of Schmidtea mediterranea to pinpoint about 14,000 3'UTRs and enhance gene annotations.
  • The study revealed that around 40% of transcripts undergo alternative polyadenylation, affecting protein coding and expression patterns, which may be significant for understanding how planarians regenerate and manage stem cell functions.
View Article and Find Full Text PDF

In recent years, the planarian Schmidtea mediterranea has emerged as a tractable model system to study stem cell biology and regeneration. MicroRNAs are small RNA species that control gene expression by modulating translational repression and mRNA stability and have been implicated in the regulation of various cellular processes. Though recent studies have identified several miRNAs in S.

View Article and Find Full Text PDF

Fate-specific differentiation of neural progenitors attracts keen interest in modern medicine due to its application in cell replacement therapy. Though various signaling pathways are involved in maintenance and differentiation of neural progenitors, the mechanism of development of lineage-restricted progenitors from embryonic stem (ES) cells is not clearly understood. Here, we have demonstrated that neuronal vs.

View Article and Find Full Text PDF

Hes-1 and Hes-5 are downstream effectors of Notch signaling that are known to be involved in different aspects of neural stem cell proliferation and differentiation. Evidence has emerged that Hes-1 expression can be regulated by alternate signaling pathways independent of canonical Notch/CBF1 interaction. This context-dependent differential regulation of Hes-1 expression in neural progenitor gains a lot of importance as it would help in its exponential expansion without the requirement of interaction from neighboring cells during development.

View Article and Find Full Text PDF

ES cells have been reported to serve as an excellent source for obtaining various specialized cell types and could be used in cell replacement therapy. Here, we demonstrate the potential of ES cells to differentiate along retinal ganglion cell (RGC) lineage. FGF2-induced ES cell derived neural progenitors (ES-NPs) were able to generate RGC-like cells in vitro upon differentiation.

View Article and Find Full Text PDF