Homologous recombination (HR) is critical for the repair of double strand breaks and broken replication forks. Although HR is mostly error free, inherent or environmental conditions that either suppress or induce HR cause genomic instability. Despite its importance in carcinogenesis, due to limitations in our ability to detect HR in vivo, little is known about HR in mammalian tissues.
View Article and Find Full Text PDFHomologous recombination can induce tumorigenic sequence rearrangements. Here, we show that persistent hyper-recombination can be induced following exposure to a bifunctional alkylating agent, mitomycin C (MMC), and that the progeny of exposed cells induce a hyper-recombination phenotype in unexposed neighboring cells. Residual damage cannot be the cause of delayed recombination events, since recombination is observed after drug and template damage are diluted over a million-fold.
View Article and Find Full Text PDFHomology directed repair (HDR) defends cells against the toxic effects of two-ended double strand breaks (DSBs) and one-ended DSBs that arise when replication progression is inhibited, for example by encounter with DNA lesions such as interstrand crosslinks (ICLs). HDR can occur via various mechanisms, some of which are associated with an increased risk of concurrent sequence rearrangements that can lead to deletions, insertions, translocations and loss of heterozygosity. Here, we compared the risk of HDR-associated sequence rearrangements that occur spontaneously versus in response to exposure to an agent that induces ICLs.
View Article and Find Full Text PDFInflammation is an important risk factor for cancer. During inflammation, macrophages secrete nitric oxide (NO*), which reacts with superoxide or oxygen to create ONOO- or N2O3, respectively. Although homologous recombination causes DNA sequence rearrangements that promote cancer, little was known about the ability of ONOO- and N2O3 to induce recombination in mammalian cells.
View Article and Find Full Text PDFA transgenic mouse has been created that provides a powerful tool for revealing genetic and environmental factors that modulate mitotic homologous recombination. The fluorescent yellow direct-repeat (FYDR) mice described here carry two different copies of expression cassettes for truncated coding sequences of the enhanced yellow fluorescent protein (EYFP), arranged in tandem. Homologous recombination between these repeated elements can restore full-length EYFP coding sequence to yield a fluorescent phenotype, and the resulting fluorescent recombinant cells are rapidly quantifiable by flow cytometry.
View Article and Find Full Text PDF