The Computational Crystallography Toolbox (cctbx) is open-source software that allows for processing of crystallographic data, including from serial femtosecond crystallography (SFX), for macromolecular structure determination. We aim to use the modules in cctbx to determine the oxidation state of individual metal atoms in a macromolecule. Changes in oxidation state are reflected in small shifts of the atom's X-ray absorption edge.
View Article and Find Full Text PDFThermophotovoltaic power conversion utilizes thermal radiation from a local heat source to generate electricity in a photovoltaic cell. It was shown in recent years that the addition of a highly reflective rear mirror to a solar cell maximizes the extraction of luminescence. This, in turn, boosts the voltage, enabling the creation of record-breaking solar efficiency.
View Article and Find Full Text PDFFourier ptychographic microscopy allows for the collection of images with a high space-bandwidth product at the cost of temporal resolution. In Fourier ptychographic microscopy, the light source of a conventional widefield microscope is replaced with a light-emitting diode (LED) matrix, and multiple images are collected with different LED illumination patterns. From these images, a higher-resolution image can be computationally reconstructed without sacrificing field-of-view.
View Article and Find Full Text PDFFourier ptychographic microscopy is a technique that achieves a high space-bandwidth product, i.e. high resolution and high field-of-view.
View Article and Find Full Text PDFTraditionally, aberration correction in extreme ultraviolet (EUV) projection optics requires the use of multiple lossy mirrors, which results in prohibitively high source power requirements. We analyze a single spherical mirror projection optical system where aberration correction is built into the mask itself, through Inverse Lithography Technology (ILT). By having fewer mirrors, this would reduce the power requirements for EUV lithography.
View Article and Find Full Text PDF