Carrier-selective contacts have emerged as a promising architecture for solar cell fabrication. In this report, the first hole-selective III-V semiconductor solar cell is demonstrated using copper iodide (CuI) on i-GaAs. Surface passivation quality of GaAs is found to be essential for open-circuit voltage (), with good correlation between photoluminescence properties of the GaAs layer and the .
View Article and Find Full Text PDFHighly sensitive photodetectors with single-photon level detection are one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most of the single-photon detection technologies require external biasing at high voltages and/or cooling to low temperatures, posing great limitations for wider applications. Here, InP nanowire array photodetectors that can achieve single-photon level light detection at room temperature without an external bias are demonstrated.
View Article and Find Full Text PDFA deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.
View Article and Find Full Text PDFSemiconductor nanowires are routinely grown on high-priced crystalline substrates as it is extremely challenging to grow directly on plastics and flexible substrates due to high-temperature requirements and substrate preparation. At the same time, plastic substrates can offer many advantages such as extremely low price, light weight, mechanical flexibility, shock and thermal resistance, and biocompatibility. We explore the direct growth of high-quality III-V nanowires on flexible plastic substrates by metal-organic vapor phase epitaxy (MOVPE).
View Article and Find Full Text PDFCurrently, a significant amount of photovoltaic device cost is related to its requirement of high-quality absorber materials, especially in the case of III-V solar cells. Therefore, a technology that can transform a low-cost, low minority carrier lifetime material into an efficient solar cell can be beneficial for future applications. Here, we transform an inefficient p-type InP substrate with a minority carrier lifetime less than 100 ps into an efficient solar cell by utilizing a radial p-n junction nanowire architecture.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2019
The challenges of making high-performance, low-temperature processed, p-type transparent conductors (TCs) have been the main bottleneck for the development of flexible transparent electronics. Though a few p-type transparent conducting oxides (TCOs) have shown promising results, they need high processing temperature to achieve the required conductivity which makes them unsuitable for organic and flexible electronic applications. Copper iodide is a wide band gap p-type semiconductor that can be heavily doped at low temperature (<100 °C) to achieve conductivity comparable or higher than many of the well-established p-type TCOs.
View Article and Find Full Text PDF