The use of physiologically based pharmacokinetic (PBPK) modeling to support the drug product quality attributes, also known as physiologically based biopharmaceutics modeling (PBBM) is an evolving field and the interest in using PBBM is increasing. The US-FDA has emphasized on the use of patient centric quality standards and clinically relevant drug product specifications over the years. Establishing an in vitro in vivo link is an important step towards achieving the goal of patient centric quality standard.
View Article and Find Full Text PDFThis workshop report summarizes the proceedings of Day 1 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies to Support Drug Product Development, Manufacturing Changes and Controls". Physiologically based biopharmaceutics models (PBBM) are tools which enable the drug product quality attributes to be linked to the in vivo performance. These tools rely on key quality inputs in order to provide reliable predictions.
View Article and Find Full Text PDFThe implementation of clinically relevant drug product specifications (CRDPS) depends on establishing a link between in vitro performance and in vivo exposure. The scientific community, including regulatory agencies, relies on biopharmaceutics tools on the in vitro performance side, while to enable the link to in vivo exposure, physiologically based pharmacokinetic (PBPK) modeling offers much promise. However, when it comes to PBPK applications in support of CRDPS, otherwise called physiologically based biopharmaceutics models (PBBM), the tools are not yet at the desired level.
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2015
Biodegradable vehicles that degrade specifically at tumor sites are highly desirable since they can cause selective exposure of highly toxic drugs at tumor sites whereas keep the conjugates stable during blood circulation. Here, we evaluate the utility of a dendritic hexadecapeptide comprised of four arms, each having a tetrapeptide sequence recognized by an enzyme cathepsin B as a carrier system for heat shock protein 90 (HSP90) inhibitor geldanamycin (GDM). We report the synthesis of a carrier having GDM conjugated to the terminal end of each arm (>55% wt/wt drug).
View Article and Find Full Text PDFA variety of delivery vehicles use spermine as a polycationic component to form complexes with nucleic acids. Thus, we investigated the influence of molecular architecture, amine density, and molecular weight of oligospermines on its binding to nucleic acids. We report the synthesis of mono, bis, and tetraspermines with linear, cyclic, dendritic, and quatrefoil architecture.
View Article and Find Full Text PDFPurpose: An oligonucleotide termed 'T-oligo' having sequence homology with telomere overhang has shown cytotoxicity in multiple cancers. We have demonstrated that T-oligo can induce apoptosis in androgen independent prostate cancer cell line DU-145. In this report, we evaluate the use of star-shaped tetraspermine (SSTS) for delivery of T-oligo.
View Article and Find Full Text PDFSpermines are naturally abundant polyamines that partially condense nucleic acids and exhibit the proton-sponge effect in an acidic environment. However, spermines show a limited efficiency for transfecting nucleic acids because of their low molecular weight. Therefore, spermines need to be modified to be used as nonviral vectors for nucleic acids.
View Article and Find Full Text PDFThe apical sodium dependent bile acid transporter (ASBT) and sodium-taurocholate cotransporting polypeptide (NTCP) are potential prodrug targets, but the structural requirements for these transporters are incompletely defined. The objective of this study was to evaluate the effect of C-3 and C-7 substitution on bile acid interaction with these bile acid transporters. Nineteen bile acid analogs were tested against ASBT and NTCP for binding, as well as translocation.
View Article and Find Full Text PDFA prodrug approach that employs the human apical sodium dependent bile acid transporter (hASBT) for absorption requires a recognition moiety for hASBT. Bile acids are natural ligands for hASBT, but are hormones with high molecular weight, such that a recognition moiety that is not a bile acid may be advantageous. The objective was to identify nonsteroidal small molecules that could potentially serve as promoieties in the design of prodrugs that target hASBT.
View Article and Find Full Text PDFPurpose: Type of inhibition (e.g. competitive, noncompetitive) is frequently evaluated to understand transporter structure/function relationships, but reliability of nonlinear regression to correctly identify inhibition type has not been assessed.
View Article and Find Full Text PDF