Publications by authors named "Vidotti M"

This short review presents the latest advances in the field of electrochemical biosensors, focusing particularly on impedimetric biosensors for the direct measurement of analytes. As a source of study we have chosen to describe these advances in the latest global health crisis originated from the COVID-19 pandemic, initiated by the SARS-CoV-2 virus. In this period, the necessity for swift and precise detection methods has grown rapidly due to an imminent need for the development of an analytical method to identify and isolate infected patients as an attempt to control the spreading of the disease.

View Article and Find Full Text PDF
Article Synopsis
  • Helicobacter pylori (H. pylori) is a class I carcinogen that resides in the human GI tract, making early detection, especially of its HopQ protein, crucial for combating infection.
  • Researchers developed an electrochemical immunosensor using polypyrrole nanotubes and carbon nanotubes to detect HopQ at incredibly low concentrations, achieving exceptional sensitivity with a detection limit of 2.06 pg/mL.
  • The biosensor demonstrated reliability and efficiency, showing a signal recovery of 105.5% in spiked drinking water samples, indicating its potential for quick and effective screening for H. pylori.
View Article and Find Full Text PDF

SARS-CoV-2 rapid spread required urgent, accurate, and prompt diagnosis to control the virus dissemination and pandemic management. Several sensors were developed using different biorecognition elements to obtain high specificity and sensitivity. However, the task to achieve these parameters in combination with fast detection, simplicity, and portability to identify the biorecognition element even in low concentration remains a challenge.

View Article and Find Full Text PDF

An electrochemical sensor for the pesticide Pirimicarb (PMC) has been developed. A screen-printed electrode (SPCE) was used and modified with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs) to enhance electrochemical proprieties. Electrode characterizations were performed using scattering electron microscopy (SEM) and cyclic voltammetry (CV).

View Article and Find Full Text PDF

In this study, polypyrrole nanotubes (PPy-NT) and gold nanoparticles (AuNPs) were electrochemically synthesized to form a hybrid material and used as an electroactive layer for the attachment of proteins for the construction of a high-performance biosensor. Besides the enhancement of intrinsic conductivity of the PPy-NT, the AuNPs act as an anchor group for the formation of self-assembly monolayers (SAMs) from the gold-sulfur covalent interaction between gold and Mercaptopropionic acid (MPA). This material was used to evaluate the viability and performance of the platform developed for biosensing, and three different biological approaches were tested: first, the Avidin-HRP/Biotin couple and characterizations were made by using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), wherein we detected Biotin in a linear range of 100-900 fmol L.

View Article and Find Full Text PDF

Polypyrrole (PPy) is an interesting conducting polymer due to its good environmental stability, high conductivity, and biocompatibility. The association between PPy and metallic nanoparticles has been widely studied since it enhances electrochemical properties. In this context, gold ions are reduced to gold nanoparticles (AuNPs) directly on the polymer surface as PPy can be oxidized to an overoxidized state.

View Article and Find Full Text PDF

The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity.

View Article and Find Full Text PDF

Although polyaniline (PANI) is a widely investigated conductive polymer for biological applications, studies addressing the biocompatibility of colloidal PANI dispersions are scarcely found in the literature of the area. Therefore, PANI nanoparticles stabilized by the natural polysaccharide gum Arabic (GA) were screened for their biocompatibility. The GA successfully stabilized the colloidal PANI-GA dispersions when exposed to a protein-rich medium, showing compatibility with the biological environment.

View Article and Find Full Text PDF

For doubled haploid (DH) production in maize, F1 generation has been the most frequently used for haploid induction due to facility in the process. However, using F2 generation would be a good alternative to increase genetic variability owing to the additional recombination in meiosis. Our goals were to compare the effect of F1 and F2 generations on DH production in tropical germplasm, evaluating the R1-navajo expression in seeds, the working steps of the methodology, and the genetic variability of the DH lines obtained.

View Article and Find Full Text PDF

Maize genotypes can show different responsiveness to inoculation with Azospirillum brasilense and an intriguing issue is which genes of the plant are involved in the recognition and growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advantage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N stress plus A. brasilense.

View Article and Find Full Text PDF

Polypyrrole (PPy) was electrochemically synthesized with charge control on the surface of a steel mesh. Two different morphologies (globular and nanotubular) were created and characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The modified electrodes were used as extraction phases in solid-phase extraction (SPE) and electrochemically controlled solid-phase extraction (EC-SPE) of atrazine, caffeine and progesterone.

View Article and Find Full Text PDF

Several studies have shown differences in the abilities of maize genotypes to facilitate or impede Azospirillum brasilense colonization and to receive benefits from this association. Hence, our aim was to study the genetic control, heterosis effect and the prediction accuracy of the shoot and root traits of maize in response to A. brasilense.

View Article and Find Full Text PDF

Our study indicates that copy variants may play an essential role in the phenotypic variation of complex traits in maize hybrids. Moreover, predicting hybrid phenotypes by combining additive-dominance effects with copy variants has the potential to be a viable predictive model. Non-additive effects resulting from the actions of multiple loci may influence trait variation in single-cross hybrids.

View Article and Find Full Text PDF

Electroactive hydrogels were prepared using commercial citric pectin, either raw (PC) or purified through dialysis (dPC), and chemically synthesized polypyrrole (PPy). H NMR analyses showed that PC is a low methoxyl pectin (degree of methoxylation, DM=46%) and dPC is a high methoxyl pectin (DM=77%). The pyrrole polymerization was monitored through UV-vis spectroscopy and both samples were observed to be good stabilizers for PPy in aqueous medium.

View Article and Find Full Text PDF

Electroactive nanoparticles combining gum arabic (GA) and polyaniline (PANI) were prepared by chemical synthesis. The gum consists of highly branched anionic polysaccharides with some protein content. GA was structurally modified by Smith controlled degradation, in order to reduce its degree of branching (GAD), aiming the elucidation of the relationship between the structure and the properties of complex polysaccharides.

View Article and Find Full Text PDF

Herein we show the synthesis and characterization of water dispersible composites formed by poly(aniline) and the natural polymer gum Arabic (GA), used as stabilizer. The materials were synthesized via a rapid and straightforward method and were fully characterized by different techniques such as UV-Vis, Raman, FTIR, TEM, SEM and cyclic voltammetry. TEM and SEM images revealed that the proportion of stabilizer highly influences the growth mechanism of the nanostructures.

View Article and Find Full Text PDF

The electrochromic behavior of iron complexes derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) and a hexacyanoferrate species in polyelectrolytic multilayer adsorbed films is described for the first time. This complex macromolecule was deposited onto indium-tin oxide (ITO) substrates via self-assembly, and the morphology of the modified electrodes was studied using atomic force microscopy (AFM), which indicated that the hybrid film containing the polyelectrolyte multilayer and the iron complex was highly homogeneous and was approximately 50 nm thick. The modified electrodes exhibited excellent electrochromic behavior with both intense and persistent coloration as well as a chromatic contrast of approximately 70%.

View Article and Find Full Text PDF

The development of the first all-diamond hydrodynamic flow device for electroanalytical applications is described. Here alternate layers of intrinsic (insulating), conducting (heavily boron doped), and intrinsic polycrystalline diamond are grown to create a sandwich structure. By laser cutting a hole through the material, it is possible to produce a tubular flow ring electrode of a characteristic length defined by the thickness of the conducting layer (for these studies ∼90 μm).

View Article and Find Full Text PDF

The present paper describes the physical-chemical characterization and electrochemical behavior of a new nanomaterial formed by the addition of cadmium and cobalt atoms into the structure of nickel hydroxide nanoparticles, these ones synthesized by an easy sonochemical method. Particles of about 5 nm diameter were obtained and characterized by high resolution transmission electron microscopy (HRTEM), X-ray diffraction and Raman spectroscopy. Different nickel hydroxide nanoparticles were immobilized onto transparent conducting substrates by using electrostatic layer-by-layer providing thin films at the nanoscale and the electrochemical behavior was investigated.

View Article and Find Full Text PDF

Nickel hydroxide nanoparticles with different amounts of cobalt atoms in the structure forming a unique material, were synthesized by using ultrasonic radiation. The particles of 5 nm diameter were prepared and characterized by X-Ray diffraction, Raman and Infrared spectroscopies, and thermogravimetry. The incorporation of cobalt leads to distinct crystalline planes, showing an opened and disarranged structure, indicating the stabilization of the alpha-Ni(OH)2 phase.

View Article and Find Full Text PDF

Nanoparticles of a Prussian blue (PB) analogue, copper hexacyanoferrate, were synthesized by using ultrasonic radiation and characterized by spectroscopic and electrochemical techniques. The nanoparticles (ca. 10 nm diameter) were immobilized onto transparent indium tin oxide electrodes by electrostatic layer-by-layer deposition.

View Article and Find Full Text PDF