Understanding how certain protein toxins from the normally insecticidal bacterium () target human cell lines has implications for both the risk assessment of products containing these toxins and potentially for cancer therapy. This understanding requires knowledge of whether the human cell active toxins work by the same mechanism as their insecticidal counterparts or by alternative ones. The Cry41Aa (also known as Parasporin3) toxin is structurally related to the toxins synthesised by commercially produced transgenic insect-resistant plants, with the notable exception of an additional C-terminal β-trefoil ricin domain.
View Article and Find Full Text PDFPrevious studies reported "mode 1" Bacillus thuringiensis resistance in a colony of diamondback moths (NO-QA), and recently, this resistance has been mapped to an ABC transporter (ABCC2) locus. We report the lack of binding of Cry1Fa to insects derived from this colony and compare our data with those from other insects with ABCC2-associated resistance.
View Article and Find Full Text PDF