The current scenario of energy production is mostly shifted towards sustainable renewable energy sources. Other than the energy production from natural resources such as sun, wind and water, microbial fuel cell system (MFC) has earned attraction in recent times. These microbial fuel cell systems are bioelectrochemical cell that possesses a unique ability to generate power as well as treats wastewater simultaneously.
View Article and Find Full Text PDFSulfonated poly ether ether ketone (SPEEK) nanocomposite proton exchange membrane (PEM) was prepared by incorporating multi-walled carbon nanotubes (CNT) at different weight percentages for microbial fuel cell (MFC) applications. Physico-chemical, thermal, mechanical and morphological characteristics of the prepared CNT-SPEEK composite membranes were analyzed using various techniques. Further, the water uptake capacity, Ion exchange capacity (IEC) and MFC performance of the CNT-SPEEK composite membranes were evaluated and compared with the pristine SPEEK membrane.
View Article and Find Full Text PDFThe aim of this study is to synthesise SPEEK composite proton exchange membrane with the addition of TiO nanofillers for microbial fuel cell application. SPEEK composite membrane with varying weight percentage of TiO (2.5, 5, 7.
View Article and Find Full Text PDFIn the present study, the extraction of divalent heavy metals like copper [Cu (II)] and cadmium [Cd (II)] using a Pickering Emulsion Liquid Membrane (PELM) has been investigated by using three different surfactants such as Amphiphilic silica nanowires (ASNWs), Aluminum oxide nanoparticles (Alumina) and Sorbitan monooleate (SPAN 80). The influence of the process parameters such as pH, the stripping phase concentration, the agitation speed, and the carrier concentration on the extraction efficiency have been examined to find the optimum conditions at which the maximum recovery of Cu (II) and Cd (II) could take place. At optimum conditions, the extraction efficiency of 89.
View Article and Find Full Text PDF