Current imaging approaches limit the ability to perform multi-scale characterization of three-dimensional (3D) organotypic cultures (organoids) in large numbers. Here, we present an automated multi-scale 3D imaging platform synergizing high-density organoid cultures with rapid and live 3D single-objective light-sheet imaging. It is composed of disposable microfabricated organoid culture chips, termed JeWells, with embedded optical components and a laser beam-steering unit coupled to a commercial inverted microscope.
View Article and Find Full Text PDFThe symmetry breaking of protein distribution and cytoskeleton organization is an essential aspect for the development of apicobasal polarity. In embryonic cells this process is largely cell autonomous, while differentiated epithelial cells collectively polarize during epithelium formation. Here, we demonstrate that the de novo polarization of mature hepatocytes does not require the synchronized development of apical poles on neighbouring cells.
View Article and Find Full Text PDFActin cytoskeleton self-organization in two cell types, fibroblasts and epitheliocytes, was studied in cells confined to isotropic adhesive islands. In fibroblasts plated onto islands of optimal size, an initially circular actin pattern evolves into a radial pattern of actin bundles that undergo asymmetric chiral swirling before finally producing parallel linear stress fibers. Epitheliocytes, however, did not exhibit succession through all the actin patterns described above.
View Article and Find Full Text PDF