Background: Fibrous dysplasia (FD) is often difficult for skull base surgeons to address. FD arises due to the abnormal proliferation of fibroblasts, ultimately resulting in immature osseous tissue replacing normal cancellous bone. When the skull base is involved, it can result in cranial nerve compression.
View Article and Find Full Text PDFSemilunar granule cells (SGCs) have been proposed as a morpho-functionally distinct class of hippocampal dentate projection neurons contributing to feedback inhibition and memory processing in juvenile rats. However, the structural and physiological features that can reliably classify granule cells (GCs) from SGCs through postnatal development remain unresolved. Focusing on postnatal days 11-13, 28-42, and > 120, corresponding with human infancy, adolescence, and adulthood, we examined the somato-dendritic morphology and inhibitory regulation in SGCs and GCs to determine the cell-type specific features.
View Article and Find Full Text PDF