Aim: To determine whether targeting mild hypercapnia (PaCO 7 kPa) would yield improved cerebral blood flow and metabolism compared to normocapnia (PaCO 5 kPa) with and without targeted temperature management to 33 °C (TTM33) in a porcine post-cardiac arrest model.
Methods: 39 pigs were resuscitated after 10 minutes of cardiac arrest using cardiopulmonary bypass and randomised to TTM33 or no-TTM, and hypercapnia or normocapnia. TTM33 was managed with intravasal cooling.
Purpose: Cardiac magnetic resonance elastography (MRE) can be used to assess myocardial stiffness in vivo. Rodents play an important role in modern cardiovascular research, and small animal cardiac MRE may reveal important aspects of myocardial stiffness. The aim of this study was to explore the feasibility of small animal cardiac MRE through investigation of stiffness measurements of small cardiac phantoms that have known underlying stiffness.
View Article and Find Full Text PDFAim: To determine whether targeting a mean arterial pressure of 90 mmHg (MAP90) would yield improved cerebral blood flow and less ischaemia compared to MAP 60 mmHg (MAP60) with and without targeted temperature management at 33 °C (TTM33) in a porcine post-cardiac arrest model.
Methods: After 10 min of cardiac arrest, 41 swine of either sex were resuscitated until return of spontaneous circulation (ROSC). They were randomised to TTM33 or no-TTM, and MAP60 or MAP90; yielding four groups.
An inflammatory response is required for tissue healing after a myocardial infarction (MI), but the process must be balanced to prevent maladaptive remodeling. This study shows that improved survival and cardiac function following MI, in mice deficient for the NLRP3 inflammasome, can be recapitulated in wild-type mice receiving bone marrow from mice. This suggests that NLRP3 activation in hematopoietic cells infiltrating in the myocardium increases mortality and late ventricular remodeling.
View Article and Find Full Text PDFPhase-contrast MRI (PC-MRI) velocimetry is a noninvasive, high-resolution motion assessment tool. However, high motion sensitivity requires strong motion-encoding magnetic gradients, making phase-contrast-MRI prone to baseline shift artifacts due to the generation of eddy currents. In this study, we propose a novel nine-point balanced velocity-encoding strategy, designed to be more accurate in the presence of strong and rapidly changing gradients.
View Article and Find Full Text PDF