Publications by authors named "Vidar Gundersen"

Parkinsonism can have many causes, among them cerebrovascular disease. Vascular parkinsonism can be caused by infarction or haemorrhage in the nigrostriatal pathway, resulting in hemiparkinsonism, or by widespread small vessel disease in the white matter, leading to the gradual development of bilateral symptoms in the lower extremities. Compared to patients with Parkinson's disease, individuals with vascular parkinsonism have earlier onset of gait disturbance, are more likely to have urinary incontinence and cognitive impairment, and have poorer treatment response and prognosis; however, they are less likely to have tremor.

View Article and Find Full Text PDF

The reason why dopamine neurons die in Parkinson's disease remains largely unknown. Emerging evidence points to a role for brain inflammation in neurodegeneration. Essential questions are whether brain inflammation happens sufficiently early so that interfering with this process can be expected to slow down neuronal death and whether the contribution from inflammation is large enough so that anti-inflammatory agents can be expected to work.

View Article and Find Full Text PDF

Background/case Presentation: A man in his fifties with advanced Parkinson´s disease was admitted with increasing motor fluctuations including dyskinesias, as well as hallucinations and delusions. After reduction of oral dopaminergic treatment, the dyskinesias improved, but the psychotic symptoms persisted. They were perceived as levodopa-induced, despite concurrent prominent bradykinetic-rigid symptoms.

View Article and Find Full Text PDF

GABA is proposed to act as a gliotransmitter in the brain. Differences in GABA release from astroglia are thought to underlie differences in tonic inhibition between the cerebellum and the CA1 hippocampus. Here we used quantitative immunogold cytochemistry to localize and compare the levels of GABA in astroglia in these brain regions.

View Article and Find Full Text PDF

GABA signaling is involved in a wide range of neuronal functions, such as synchronization of action potential firing, synaptic plasticity and neuronal development. Sustained GABA signaling requires efficient mechanisms for the replenishment of the neurotransmitter pool of GABA. The prevailing theory is that exocytotically released GABA may be transported into perisynaptic astroglia and converted to glutamine, which is then shuttled back to the neurons for resynthesis of GABA-i.

View Article and Find Full Text PDF
Article Synopsis
  • Astrocytes play a critical role in brain development by regulating synapse formation and function, which is linked to various psychiatric disorders.
  • A specific group of cortical astrocytes helps maintain dopamine levels during the development of the prefrontal cortex, ensuring proper maturation of neural circuits.
  • Disruption of the dopamine regulation by astrocytes leads to synaptic issues and cognitive impairments, highlighting their importance in mental health.
View Article and Find Full Text PDF

Propionic acidemia is the accumulation of propionate in blood due to dysfunction of propionyl-CoA carboxylase. The condition causes lethargy and striatal degeneration with motor impairment in humans. How propionate exerts its toxic effect is unclear.

View Article and Find Full Text PDF

Aquaporin-4 (AQP4) is the predominant water channel in mammalian CNS where it is localized at the perivascular astrocytic foot processes abutting brain microvessels. Several lines of evidence suggest that AQP4 is involved in important homeostatic functions and that mislocalization of the perivascular pool of AQP4 is implicated in several different brain disorders. A recent study suggests that the differential susceptibility of midbrain dopaminergic neurons to the parkinsonogenic toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) depends on the expression of AQP4.

View Article and Find Full Text PDF

Neuroglia, the "glue" that fills the space between neurons in the central nervous system, takes active part in nerve cell signaling. Neuroglial cells, astroglia, oligodendroglia, and microglia, are together about as numerous as neurons in the brain as a whole, and in the cerebral cortex grey matter, but the proportion varies widely among brain regions. Glial volume, however, is less than one-fifth of the tissue volume in grey matter.

View Article and Find Full Text PDF

There is compelling evidence that glutamate can act as a cotransmitter in the mammalian brain. Interestingly, the third vesicular glutamate transporter (VGLUT3) is primarily found in neurons that were anticipated to be nonglutamatergic. Whereas the function of VGLUT3 in acetylcholinergic and serotoninergic neurons has been elucidated, the role of VGLUT3 in neurons releasing gamma-aminobutyric acid (GABA) is not settled.

View Article and Find Full Text PDF

The role of N-acetylaspartate in the brain is unclear. Here we used specific antibodies against N-acetylaspartate and immunocytochemistry of carbodiimide-fixed adult rodent brain to show that, besides staining of neuronal cell bodies in the grey matter, N-acetylaspartate labelling was present in oligodendrocytes/myelin in white matter tracts. Immunoelectron microscopy of the rat hippocampus showed that N-acetylaspartate was concentrated in the myelin.

View Article and Find Full Text PDF

Glial cells in their plurality pervade the human brain and impact on brain structure and function. A principal component of the emerging glial doctrine is the hypothesis that astrocytes, the most abundant type of glial cells, trigger major molecular processes leading to brain ageing. Astrocyte biology has been examined using molecular, biochemical and structural methods, as well as 3D brain imaging in live animals and humans.

View Article and Find Full Text PDF

Background: Metabolic impairment contributes to development of Parkinson's disease (PD). Mitochondrial dysfunction is involved in degeneration of nigral dopamine neurons. Also, in PD there are alterations in glucose metabolism in nigro-striatal pathways, and increased cerebral lactate levels have been found.

View Article and Find Full Text PDF

Recently, electrophysiological evidence was given for inhibitory postsynaptic responses at dopaminergic striatal synapses. These responses were independent of the vesicular GABA transporter, VGAT, but dependent on the vesicular dopamine transporter VMAT2. The identity and the exact source of the released molecule, as well as the presence of the putative inhibitory transmitter in VMAT2 containing synaptic vesicles remain to be shown.

View Article and Find Full Text PDF

Background: The neocortex is a highly specialised and complex brain structure, involved in numerous tasks, ranging from processing and interpretation of somatosensory information, to control of motor functions. The normal function linked to distinct neocortical areas might involve control of highly specific gene expression, and in order to identify such regionally enriched genes, we previously analysed the global gene expression in three different cortical regions (frontomedial, temporal and occipital cortex) from the adult rat brain. We identified distinct sets of differentially expressed genes.

View Article and Find Full Text PDF

Although microglia is recognised as the cell-mediating innate immunity in the brain, emerging evidence suggests a role of microglia in synaptic communication and modulation. The ability of microglia to move in the neuropil and contact synapses is crucial for such a function. However, the frequency of microglial contact with synapses is not known.

View Article and Find Full Text PDF

The mechanism of release and the role of l-aspartate as a central neurotransmitter are controversial. A vesicular release mechanism for l-aspartate has been difficult to prove, as no vesicular l-aspartate transporter was identified until it was found that sialin could transport l-aspartate and l-glutamate when reconstituted into liposomes. We sought to clarify the release mechanism of l-aspartate and the role of sialin in this process by combining l-aspartate uptake studies in isolated synaptic vesicles with immunocyotchemical investigations of hippocampal slices.

View Article and Find Full Text PDF

Valproate is well established in the treatment of epilepsy and psychiatric disorders, yet the main mechanism of action remains to be determined. Here we show that valproate may reduce neurotransmission of the excitatory amino acid, aspartate. By electron microscopic immunogold cytochemistry we demonstrate a 63-68% reduction in the level of aspartate in excitatory nerve terminals at 30 min after an acute dose of valproate.

View Article and Find Full Text PDF

There is increasing evidence for vesicular release of glutamate from astrocytes. We have previously demonstrated existence of VGLUT1 on astrocytic synaptic-like microvesicles (SMLVs) in several brain regions indicating a role in astroglial glutamate release. As VGLUT3 is prominently expressed in non-neuronal cells, this prompted us to investigate whether VGLUT3 is also involved in astroglial release of glutamate.

View Article and Find Full Text PDF

During the last years, the concept of gliotransmission has been established. Glutamate has been shown to be released from astrocytes by different mechanisms, e.g.

View Article and Find Full Text PDF

In the brain, glutamate is an extracellular transmitter that mediates cell-to-cell communication. Prior to synaptic release it is pumped into vesicles by vesicular glutamate transporters (VGLUTs). To inactivate glutamate receptor responses after release, glutamate is taken up into glial cells or neurons by excitatory amino acid transporters (EAATs).

View Article and Find Full Text PDF

ATP is known to be coreleased with glutamate at certain central synapses. However, the nature of its release is controversial. Here, we demonstrate that ATP release from cultured rat hippocampal neurons is sensitive to RNAi-mediated knockdown of the recently identified vesicular nucleotide transporter (VNUT or SLC17A9).

View Article and Find Full Text PDF

Background: The objective of this study was to examine the clinical outcome and mortality of long-term deep brain stimulation of the subthalamic nucleus in advanced Parkinson's disease.

Methods: We included all 144 patients (mean age, 60.3 years; mean disease duration, 11.

View Article and Find Full Text PDF

The sodium-dependent inorganic phosphate transporter NaPi-IIa is expressed in the kidney. Here, the authors used a polyclonal antiserum raised against NaPi-IIa- and NaPi-IIa-deficient mice to characterize its expression in nervous tissue. Western blots showed that a NaPi-IIa immunoreactive band (~90 kDa) was only present in wild-type kidney membranes and not in kidney knockout or wild-type brain membranes.

View Article and Find Full Text PDF