Publications by authors named "Vida van Staden"

African horse sickness is a deadly and highly infectious disease of equids, caused by African horse sickness virus (AHSV). AHSV is one of the most economically important members of the genus. AHSV is transmitted by the biting midge, , and therefore replicates in both insect and mammalian cell types.

View Article and Find Full Text PDF

A unique characteristic of the African horse sickness virus (AHSV) major core protein VP7 is that it is highly insoluble, and spontaneously forms crystalline particles in AHSV-infected cells and when expressed in vitro. The aggregation of AHSV VP7 into these crystals presents many problems in AHSV vaccine development, and it is unclear whether VP7 aggregation affects AHSV assembly or contributes to AHSV pathogenesis. Here, we set out to abolish VP7 self-assembly by targeting candidate amino acid regions on the surface of the VP7 trimer via site-directed mutagenesis.

View Article and Find Full Text PDF

African horse sickness virus (AHSV) non-structural protein NS4 is a nucleocytoplasmic protein that is expressed in the heart, lung, and spleen of infected horses, binds dsDNA, and colocalizes with promyelocytic leukemia nuclear bodies (PML-NBs). The aim of this study was to investigate the role of AHSV NS4 in viral replication, virulence and the host immune response. Using a reverse genetics-derived virulent strain of AHSV-5 and NS4 deletion mutants, we showed that knockdown of NS4 expression has no impact in cell culture, but results in virus attenuation in infected horses.

View Article and Find Full Text PDF

African horse sickness virus (AHSV) is the causative agent of the often fatal disease African horse sickness in equids. The non-structural protein NS4 is the only AHSV protein that localizes to the nucleus. Here we report that all AHSV reference and representative field strains express one of the two forms of NS4, i.

View Article and Find Full Text PDF

The African horse sickness virus non-structural protein 3 (NS3) is involved in the final stages of infection. To gain insight into the function of different NS3 domains, we generated reverse genetics-derived mutants, each expressing a modified version of the protein. A functional comparison of these mutants to the wild-type virus in mammalian cells indicated the variable contribution of the different domains to the cytopathic effect and in ensuring effective virus trafficking and release.

View Article and Find Full Text PDF

VP7 is the major core protein of orbiviruses and is essential for virion assembly. African horse sickness virus (AHSV) VP7 self-assembles into highly insoluble crystalline particles - an attribute that may be related to the role of AHSV VP7 in virus assembly but also prevents crystallization. Given that this inherent insolubility is unique to AHSV VP7, we use amino acid sequence conservation analysis between AHSV VP7 and other orbiviruses to identify putative key residues that drive AHSV VP7 self-assembly.

View Article and Find Full Text PDF

The bulk of the major core protein VP7 in African horse sickness virus (AHSV) self-assembles into flat, hexagonal crystalline particles in a process appearing unrelated to viral replication. Why this unique characteristic of AHSV VP7 is genetically conserved, and whether VP7 aggregation and particle formation have an effect on cellular biology or the viral life cycle, is unknown. Here we investigated how different small peptide and enhanced green fluorescent protein (eGFP) insertions into the VP7 top domain affected VP7 localization, aggregation, and particle formation.

View Article and Find Full Text PDF

African horse sickness is a serious equid disease caused by the orbivirus African horse sickness virus (AHSV). The virus has ten double-stranded RNA genome segments encoding seven structural and three non-structural proteins. Recently, an additional protein was predicted to be encoded by genome segment 9 (Seg-9), which also encodes VP6, of most orbiviruses.

View Article and Find Full Text PDF

African horse sickness virus (AHSV) VP7 is the major core protein of the virion. Apart from its role in virus assembly, VP7 forms crystalline-like particles during infection and when expressed in insect cells. The aim of this study was to investigate the process of VP7 crystalline-like particle formation.

View Article and Find Full Text PDF

Cryofixation by high-pressure freezing (HPF) and freeze substitution (FS) gives excellent preservation of intracellular membranous structures, ideal for ultrastructural investigations of virus infected cells. Conventional sample preparation methods of tissue cultured cells can however disrupt the association between neighboring cells or of viruses with the plasma membrane, which impacts upon the effectiveness whereby virus release from cells can be studied. We established a system for virus infection and transmission electron microscopy preparation of mammalian cells that allowed optimal visualization of membrane release events.

View Article and Find Full Text PDF

The role of African horsesickness virus (AHSV) nonstructural membrane protein NS3 in determining the effects of AHSV infection on Vero cells was examined. NS3 protein sequences are highly variable and cluster into three phylogenetic groups, alpha, beta, and gamma. Three AHSV strains, with NS3 from alpha, beta, or gamma, were shown to have quantitatively different phenotypes in Vero cells.

View Article and Find Full Text PDF