Publications by authors named "Vida Falahatian"

There is an unmet need for the treatment of glioblastoma multiforme (GBM). The extracellular matrix, including laminins, in the tumor microenvironment is important for tumor invasion and progression. In a panel of 226 patient brain glioma samples, we found a clinical correlation between the expression of tumor vascular laminin-411 (α4β1γ1) with higher tumor grade and with expression of cancer stem cell (CSC) markers, including Notch pathway members, CD133, Nestin, and c-Myc.

View Article and Find Full Text PDF

Purpose: To describe and test a quantitative system for designating prostate tumor location on magnetic resonance imaging (MRI) and prostatectomy. A system for describing tumor location will facilitate research correlating MRI and pathology.

Materials And Methods: The prostate cylindrical coordinate (PCC) system was developed for locating prostate tumors using 3 coordinate values.

View Article and Find Full Text PDF

Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) remains the deadliest brain tumor in adults. GBM tumors are also notorious for drug and radiation resistance. To inhibit GBMs more effectively, polymalic acid-based blood-brain barrier crossing nanobioconjugates were synthesized that are delivered to the cytoplasm of cancer cells and specifically inhibit the master regulator serine/threonine protein kinase CK2 and the wild-type/mutated epidermal growth factor receptor (EGFR/EGFRvIII), which are overexpressed in gliomas according to The Cancer Genome Atlas (TCGA) GBM database.

View Article and Find Full Text PDF

Brain peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily of ligand-dependent transcription factors, is involved in neuroprotection. It is activated by the drug rosiglitazone, which then can increase the pro-survival protein B-cell lymphoma 2 (BCL-2), to mediate neuroprotection. However, the mechanism underlying this molecular cascade remains unknown.

View Article and Find Full Text PDF