Publications by authors named "Vicuna Rafael"

Background: Using a previously unreported Peruvian registry of patients treated for early-stage non-small cell lung cancer (NSCLC), this study explored whether wedge resection and lobectomy were equivalent regarding survival and impact on radiologic-pathologic variables.

Methods: This observational, analytical, longitudinal study used propensity score-matched (PSM) analysis of a single-center retrospective registry of 2,570 patients with pathologic stage I-II NSCLC who were treated with wedge resection (n=1,845) or lobectomy (n=725) during 2000-2020. After PSM, 650 cases were analyzed (resection, n=325; lobectomy, n=325) through preoperative and clinical variables, including patients with ≥1 lymph node removed.

View Article and Find Full Text PDF

Oxygenic photosynthesis conducted by cyanobacteria has dramatically transformed the geochemistry of our planet. These organisms have colonized most habitats, including extreme environments such as the driest warm desert on Earth: the Atacama Desert. In particular, cyanobacteria highly tolerant to desiccation are of particular interest for clean energy production.

View Article and Find Full Text PDF

For tolerating extreme desiccation, cyanobacteria are known to produce both compatible solutes at intracellular level and a copious amount of exopolysaccharides as a protective coat. However, these molecules make cyanobacterial cells refractory to a broad spectrum of cell disruption methods, hindering genome sequencing, and molecular studies. In fact, few genomes are already available from cyanobacteria from extremely desiccated environments such as deserts.

View Article and Find Full Text PDF

The Atacama Desert is the driest and oldest desert on Earth. Eleven years ago, the Yungay region was established as the driest site of this hyperarid desert and also close to the dry limit for life on Earth. Since then, much has been published about the extraordinary characteristics of this site and its pertinence as a Mars analogue model.

View Article and Find Full Text PDF

The comprehensive study of microorganisms that evolved in the Atacama Desert, the driest and oldest on earth, may help to understand the key role of water for life. In this context, we previously characterized the microenvironment that allows colonization of the underside of quartzes in the Coastal Range of this desert by hypolithic microorganisms (Azua-Bustos et al. Microb Ecol 58:568-581, 2011).

View Article and Find Full Text PDF

We have recently discovered a variety of unrelated phototrophic microorganisms (two microalgae and one cyanobacteria) in specialized terrestrial habitats at The Coastal Range of the Atacama Desert. Interestingly, morphological and molecular evidence suggest that these three species are all recent colonists that came from aquatic habitats. The first case is Cyanidiales inhabiting coastal caves.

View Article and Find Full Text PDF

Martian surface microbial inhabitants would be challenged by a constant and unimpeded flux of UV radiation, and the study of analog model terrestrial environments may be of help to understand how such life forms could survive under this stressful condition. One of these environments is the Atacama Desert (Chile), a well-known Mars analog due to its extreme dryness and intense solar UV radiation. Here, we report the microbial diversity at five locations across this desert and the isolation of UVC-tolerant microbial strains found in these sites.

View Article and Find Full Text PDF

The Atacama Desert, located in northern Chile, is the driest and oldest desert on Earth. Research aimed at the understanding of this unique habitat and its diverse microbial ecosystems begun only a few decades ago, mainly driven by NASA's astrobiology program. A milestone in these efforts was a paper published in 2003, when the Atacama was shown to be a proper model of Mars.

View Article and Find Full Text PDF

Iron, although toxic in excess, is an essential element for biological systems. Therefore, its homeostasis is of critical importance and tight mechanisms participate in its acquisition by microbial organisms. Lately, the relevance of this metal for biomass conversion by wood-degrading fungi has been gaining increasing attention.

View Article and Find Full Text PDF

Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C.

View Article and Find Full Text PDF
Article Synopsis
  • The Atacama Desert is extremely dry, making it difficult for hypolithic cyanobacteria to thrive, especially when rain is less than 1 mm per year.
  • Recent research found that areas along the coast of the desert host diverse microbial communities, including cyanobacteria and heterotrophic bacteria, under translucent quartz stones, with colonization rates reaching up to 80%.
  • The study proposes that these thriving communities depend on fog as a primary moisture source, aided by quartz's thermal properties, which create cooler conditions beneath the stones.
View Article and Find Full Text PDF

The ligninolytic machinery of the widely used model fungus Ceriporiopsis subvermispora includes the enzymes manganese-peroxidase (MnP) and laccase (Lcs). In this work the effect of Mn(II) on the secretion of MnP was studied. Cultures grown in the absence of Mn(II) showed high levels of mnp transcripts.

View Article and Find Full Text PDF

The biodegradation of lignin is a highly oxidative process in which various oxidases and peroxidases play a major role. During lignin decay, the generation of aromatic compounds and reactive oxygen species leads to oxidative stress. In this work, the effect of the oxidative compounds H(2)O(2) and hydroquinone in the ligninolytic fungus Ceriporiopsis subvermispora was studied, both at the ultrastructural and at the transcriptional level.

View Article and Find Full Text PDF

Cellobiose dehydrogenase (CDH), an extracellular flavocytochrome produced by several wood-degrading fungi, was detected in cultures of the selective delignifier Ceriporiopsis subvermispora when grown on a cellulose- and yeast extract-based liquid medium. CDH amounted to up to 2.5% of total extracellular protein during latter phases of the cultivation and thus suggested an important function for the fungus under the given conditions.

View Article and Find Full Text PDF

Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P.

View Article and Find Full Text PDF

The effect of copper on the expression of genes encoding the ligninolytic enzymes laccase (lcs) and manganese peroxidase (mnp) in Ceriporiopsis subvermispora was evaluated. This metal increased transcript levels of lcs, mnp1 and mnp2. This finding was not unexpected in the case of lcs, since its promoter contains a putative ACE element.

View Article and Find Full Text PDF

In this work, we explore the use of the unbiased cDNA-AFLP strategy to identify genes involved in Mn(2+) homeostasis in Ceriporiopsis subvermispora. In this ligninolytic white-rot fungus, whose genome has not yet been sequenced, three Mn peroxidase genes responding to Mn(2+) have been characterized. Using cDNA-AFLP to identify transcript-derived fragments (TDFs), a total of 37 differentially expressed cDNA fragments were identified by comparing band intensities among cDNA-AFLP patterns obtained from mycelia from cultures supplemented with different concentrations of Mn(2+).

View Article and Find Full Text PDF

We have previously identified and functionally characterized the transcription factor ACE1 (Pc-ACE1) from Phanerochaete chrysosporium. In Saccharomyces cerevisiae, ACE1 activates the copper-dependent transcription of target genes through a DNA sequence element named ACE. However, the possible target gene(s) of Pc-ACE1 were unknown.

View Article and Find Full Text PDF

The authors have previously identified and characterized lcs, a gene encoding laccase in the white-rot basidiomycete Ceriporiopsis subvermispora. In this work, the effect of Mn2+ in the production of extracellular laccase in liquid cultures of this fungus has been assessed. It was observed that at low (0-10 microM) concentrations of Mn2+, high titers of lcs-mRNA were obtained, whereas at high (160-194 microM) concentrations of this metal ion, transcripts levels decreased markedly.

View Article and Find Full Text PDF

In this report we describe the isolation and characterization of a gene encoding the transcription factor Ace1 (Activation protein of cup 1 Expression) in the white rot fungus Phanerochaete chrysosporium. Pc-ace1 encodes a predicted protein of 633 amino acids containing the copper-fist DNA binding domain typically found in fungal transcription factors such as Ace1, Mac1 and Haa1 from Saccharomyces cerevisiae. The Pc-ace1 gene is localized in Scaffold 5, between coordinates 220841 and 222983.

View Article and Find Full Text PDF

MCO1, a multicopper oxidase from Phanerochaete chrysosporium exhibiting strong ferroxidase activity, has recently been described. This enzyme shows biochemical and structural similarities with the yeast Fet3p, a type I membrane glycoprotein that efficiently oxidizes Fe(II) to Fe(III) for its subsequent transport to the intracellular compartment by the iron permease Ftr1p. The genome database of P.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the structure and effects of repetitive elements in the genome of the lignin-degrading fungus, Phanerochaete chrysosporium.
  • Researchers discovered multiple copies of a non-autonomous class II element (pce1) and a retrotransposon (pcret1) that impact the transcription of genes related to enzymes like glucosyltransferase and cytochrome P450.
  • The findings reveal that these repetitive elements lead to incomplete transcripts and are mainly confined to specific alleles, highlighting a complex interaction affecting gene expression in this species.
View Article and Find Full Text PDF

Oxalate oxidase is thought to be involved in the production of hydrogen peroxide for lignin degradation by the dikaryotic white rot fungus Ceriporiopsis subvermispora. This enzyme was purified, and after digestion with trypsin, peptide fragments of the enzyme were sequenced using quadrupole time-of-flight mass spectrometry. Starting with degenerate primers based on the peptide sequences, two genes encoding isoforms of the enzyme were cloned, sequenced, and shown to be allelic.

View Article and Find Full Text PDF

Inspection of the genome of the ligninolytic basidiomycete Phanerochaete chrysosporium revealed an unusual peroxidase_like sequence. The corresponding full length cDNA was sequenced and an archetypal secretion signal predicted. The deduced mature protein (NoP, novel peroxidase) contains 295 aa residues and is therefore considerably shorter than other Class II (fungal) peroxidases, such as lignin peroxidases and manganese peroxidases.

View Article and Find Full Text PDF