Publications by authors named "Victorino Franco"

The growing demand for solid-state magnetic cooling, leveraging the magnetocaloric effect requires the discovery of high-performing magnetocaloric materials (MCMs). Herein, a family of Gd-containing MCMs is provided, specifically the GdASiO (A = K, Na, and Li) oxides, which demonstratse exceptional low-temperature magnetocaloric performance. Through comprehensive experimental investigations and theoretical calculations on their structural, electronic, and magnetic properties, it is unequivocally confirmed that all of them crystallize in a hexagonal apatite-type structure (space group P6/m), exhibiting an antiferromagnetic semiconductor ground state with magnetic ordering temperatures below 1.

View Article and Find Full Text PDF

This study comprehensively analyzed green nanomagnetic iron oxide particles (GNMIOPs) synthesized using a green method, investigating their size, shape, crystallinity, aggregation, phase portions, stability, and magnetism. The influence of pH and washing solvents on the magnetic properties of the nanoparticles and their incorporation into PCL membranes was examined for biomedical applications. Polyphenols were utilized at different pH values (1.

View Article and Find Full Text PDF

This comprehensive study investigates the properties of chemical nanomagnetic iron oxide particles (CNMIOPs) synthesized through a chemical method. The primary objective is to examine how pH levels and washing solvents affect the magnetism properties of these nanoparticles. Three different pH levels (1.

View Article and Find Full Text PDF

The ideal magnetocaloric material would lay at the borderline of a first-order and a second-order phase transition. Hence, it is crucial to unambiguously determine the order of phase transitions for both applied magnetocaloric research as well as the characterization of other phase change materials. Although Ehrenfest provided a conceptually simple definition of the order of a phase transition, the known techniques for its determination based on magnetic measurements either provide erroneous results for specific cases or require extensive data analysis that depends on subjective appreciations of qualitative features of the data.

View Article and Find Full Text PDF

Nanocrystalline Nd(2)Fe(17) powders have been obtained by means of high-energy ball milling from nearly single-phase bulk alloys produced by arc melting and high temperature homogenization annealing. The rhombohedral Th(2)Zn(17)-type crystal structure of the bulk alloy remains unaltered after the milling process, with almost unchanged values for the cell parameters. However, the severe mechanical processing induces drastic microstructural changes.

View Article and Find Full Text PDF