Type VI secretion systems (T6SSs) are widespread in Gram-negative bacteria, including Pseudomonas. These macromolecular machineries inject toxins directly into prokaryotic or eukaryotic prey cells. Hcp proteins are structural components of the extracellular part of this machinery.
View Article and Find Full Text PDFBackground: Pseudomonas fluorescens strain MFE01 secretes in abundance two Hcp proteins (haemolysin co-regulated proteins) Hcp1 and Hcp2, characteristic of a functional type 6 secretion system. Phenotypic studies have shown that MFE01 has antibacterial activity against a wide range of competitor bacteria, including rhizobacteria and clinically relevant bacteria. Mutagenesis of the hcp2 gene abolishes or reduces, depending on the target strain, MFE01 antibacterial activity.
View Article and Find Full Text PDFPseudomonas fluorescens is commonly considered a saprophytic rhizobacterium devoid of pathogenic potential. Nevertheless, the recurrent isolation of strains from clinical human cases could indicate the emergence of novel strains originating from the rhizosphere reservoir, which could be particularly resistant to the immune system and clinical treatment. The importance of type three secretion systems (T3SSs) in the related Pseudomonas aeruginosa nosocomial species and the occurrence of this secretion system in plant-associated P.
View Article and Find Full Text PDFProtein secretion systems are crucial mediators of bacterial interactions with other organisms. Among them, the type VI secretion system (T6SS) is widespread in Gram-negative bacteria and appears to inject toxins into competitor bacteria and/or eukaryotic cells. Major human pathogens, such as Vibrio cholerae, Burkholderia and Pseudomonas aeruginosa, express T6SSs.
View Article and Find Full Text PDFBackground: Pseudomonas fluorescens biovar I MFN1032 is a clinical isolate able to grow at 37°C. This strain displays secretion-mediated hemolytic activity involving phospholipase C and cyclolipopeptides, and a cell-associated hemolytic activity distinct from the secreted hemolytic activity. Cell-associated hemolysis is independent of biosurfactant production and remains in a gacA mutant.
View Article and Find Full Text PDF