Gut educated IgA secreting plasma cells that disseminate beyond the mucosa and into systemic tissues have been described as providing beneficial effects from disease in several contexts. Several bacteria have been implicated in the induction of systemic IgA, however the mechanisms that result in differential levels of induction by each bacterial species are still unknown. Here we show, the commensal bacteria, (), is an efficient inducer of systemic IgA responses.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic human respiratory illness COVID-19, is a global health emergency. While severe acute disease has been linked to an expansion of antibody-secreting plasmablasts, we sought to identify B cell responses that correlated with positive clinical outcomes in convalescent patients. We characterized the peripheral blood B cell immunophenotype and plasma antibody responses in 40 recovered non-hospitalized COVID-19 subjects that were enrolled as donors in a convalescent plasma treatment study.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of the pandemic human respiratory illness COVID-19, is a global health emergency. While severe acute disease has been linked to an expansion of antibody-secreting plasmablasts, we sought to identify B cell responses that correlated with positive clinical outcomes in convalescent patients. We characterized the peripheral blood B cell immunophenotype and plasma antibody responses in 40 recovered non-hospitalized COVID-19 subjects that were enrolled as donors in a convalescent plasma treatment study.
View Article and Find Full Text PDFHelicobacter pylori is a gram-negative bacterium that persistently colonizes the human stomach by inducing immunoregulatory responses. We have used a novel platform that integrates a bone marrow-derived macrophage and live H. pylori co-culture with global time-course transcriptomics analysis to identify new regulatory genes based on expression patterns resembling those of genes with known regulatory function.
View Article and Find Full Text PDFAbscisic acid is a phytohormone found in fruits and vegetables and is endogenously produced in mammals. In humans and mice, lanthionine synthetase C-like 2 (LANCL2) has been characterized as the natural receptor for ABA. Herein, we characterize the efficacy of a fig fruit extract of ABA in promoting glycemic control.
View Article and Find Full Text PDFInflammatory bowel disease (IBD) is a complex autoimmune disease with dysfunction in pattern-recognition responses, including within the NLR family. Nucleotide-binding oligomerization domain, leucine rich repeat containing X1 (NLRX1) is a unique NLR with regulatory and anti-inflammatory functions resulting in protection from IBD in mouse models. NX-13 is an orally active, gut-restricted novel drug candidate that selectively targets and activates the NLRX1 pathway locally in the gut.
View Article and Find Full Text PDFNucleotide-binding oligomerization domain, leucine rich repeat containing X1 (NLRX1) is an emerging therapeutic target for a spectrum of human diseases. NX-13 is a small molecule therapeutic designed to target and activate NLRX1 to induce immunometabolic changes resulting in lower inflammation and therapeutic responses in inflammatory bowel disease (IBD). This study investigates the safety of NX-13 in a seven-day, repeat-dose general toxicity study in male and female Sprague Dawley rats at oral doses of 500 and 1000 mg/kg.
View Article and Find Full Text PDFBT-11 is a new oral, gut-restricted, first-in-class investigational drug for Crohn disease (CD) and ulcerative colitis (UC) that targets the lanthionine synthetase C-like 2 (LANCL2) pathway and immunometabolic mechanisms. Oral BT-11 was assessed for safety, tolerability, and pharmacokinetics (PK) in normal healthy volunteers (n = 70) in a randomized, double-blind, placebo-controlled trial. Subjects (n = 70) were randomly assigned to one of five single ascending dose cohorts (up to 100 mg/kg, p.
View Article and Find Full Text PDFBT-11 is an orally active, gut-restricted investigational therapeutic targeting the lanthionine synthetase C-like 2 pathway with lead indications in ulcerative colitis (UC) and Crohn disease (CD), 2 manifestations of inflammatory bowel disease (IBD). In 5 mouse models of IBD, BT-11 is effective at oral doses of 8 mg/kg. BT-11 was also efficacious at nanomolar concentrations in primary human samples from patients with UC and CD.
View Article and Find Full Text PDFBackground: Inflammatory bowel disease (IBD) afflicts 5 million people and is increasing in prevalence. There is an unmet clinical need for safer and effective treatments for IBD. The BT-11 is a small molecule oral therapeutic that ameliorates IBD by targeting lanthionine synthetase C-like 2 (LANCL2) and has a benign safety profile in rats.
View Article and Find Full Text PDFInteractions among the gut microbiome, dysregulated immune responses, and genetic factors contribute to the pathogenesis of inflammatory bowel disease (IBD). mice have exacerbated disease severity, colonic lesions, and increased inflammatory markers. Global transcriptomic analyses demonstrate enhanced mucosal antimicrobial defense response, chemokine and cytokine expression, and epithelial cell metabolism in colitic mice compared to wild-type (WT) mice.
View Article and Find Full Text PDFThe current treatment paradigm in Clostridium difficile infection is the administration of antibiotics contributing to the high rates of recurrent infections. Recent alternative strategies, such as fecal microbiome transplantation and anti-toxin antibodies, have shown similar efficacy in the treatment of C. difficile associated disease (CDAD).
View Article and Find Full Text PDFAbscisic acid is naturally present in fruits and vegetables, and it plays an important role in managing glucose homeostasis in humans. According to the latest U.S.
View Article and Find Full Text PDFBroad-based, host-targeted therapeutics have the potential to ameliorate viral infections without inducing antiviral resistance. We identified lanthionine synthetase C-like 2 (LANCL2) as a new therapeutic target for immunoinflammatory diseases. To examine the therapeutic efficacy of oral NSC61610 administration on influenza, we infected C57BL/6 mice with influenza A H1N1pdm virus and evaluated influenza-related mortality, lung inflammatory profiles, and pulmonary histopathology.
View Article and Find Full Text PDF, the dominant member of the human gastric microbiota, elicits immunoregulatory responses implicated in protective versus pathological outcomes. To evaluate the role of macrophages during infection, we employed a system with a shifted proinflammatory macrophage phenotype by deleting PPARγ in myeloid cells and found a 5- to 10-fold decrease in gastric bacterial loads. Higher levels of colonization in wild-type mice were associated with increased presence of mononuclear phagocytes and in particular with the accumulation of CD11bF4/80CD64CXCR1 macrophages in the gastric lamina propria.
View Article and Find Full Text PDFNucleotide oligomerization domain-like receptor X1 (NLRX1) has been implicated in viral response, cancer progression, and inflammatory disorders; however, its role as a dual modulator of CD4 T cell function and metabolism has not been defined. The loss of NLRX1 results in increased disease severity, populations of Th1 and Th17 cells, and inflammatory markers (IFN-γ, TNF-α, and IL-17) in mice with dextran sodium sulfate-induced colitis. To further characterize this phenotype, we used in vitro CD4 T cell-differentiation assays and show that NLRX1-deficient T cells have a greater ability to differentiate into an inflammatory phenotype and possess greater proliferation rates.
View Article and Find Full Text PDFImmune responses to Helicobacter pylori are orchestrated through complex balances of host-bacterial interactions, including inflammatory and regulatory immune responses across scales that can lead to the development of the gastric disease or the promotion of beneficial systemic effects. While inflammation in response to the bacterium has been reasonably characterized, the regulatory pathways that contribute to preventing inflammatory events during H. pylori infection are incompletely understood.
View Article and Find Full Text PDF