Comprehensive information on the timing and location of gene expression is fundamental to our understanding of embryonic development and tissue formation. While high-throughput in situ hybridization projects provide invaluable information about developmental gene expression patterns for model organisms like Drosophila, the output of these experiments is primarily qualitative, and a high proportion of protein coding genes and most non-coding genes lack any annotation. Accurate data-centric predictions of spatio-temporal gene expression will therefore complement current in situ hybridization efforts.
View Article and Find Full Text PDFIn mood disorders, psychomotor and sensory abnormalities are prevalent, disabling, and intertwined with emotional and cognitive symptoms. Corticostriatal neurons in motor and somatosensory cortex are implicated in these symptoms, yet mechanisms of their vulnerability are unknown. Here, we demonstrate that S100a10 corticostriatal neurons exhibit distinct serotonin responses and have increased excitability, compared with S100a10-negative neurons.
View Article and Find Full Text PDFEffective discovery of causal disease genes must overcome the statistical challenges of quantitative genetics studies and the practical limitations of human biology experiments. Here we developed diseaseQUEST, an integrative approach that combines data from human genome-wide disease studies with in silico network models of tissue- and cell-type-specific function in model organisms to prioritize candidates within functionally conserved processes and pathways. We used diseaseQUEST to predict candidate genes for 25 different diseases and traits, including cancer, longevity, and neurodegenerative diseases.
View Article and Find Full Text PDFThe biology and behavior of adults differ substantially from those of developing animals, and cell-specific information is critical for deciphering the biology of multicellular animals. Thus, adult tissue-specific transcriptomic data are critical for understanding molecular mechanisms that control their phenotypes. We used adult cell-specific isolation to identify the transcriptomes of C.
View Article and Find Full Text PDFA key challenge in precision medicine lies in understanding molecular-level underpinnings of complex human disease. Biological networks in multicellular organisms can generate hypotheses about disease genes, pathways, and their behavior in disease-related tissues. Diverse functional genomic data, including expression, protein-protein interaction, and relevant sequence and literature information, can be utilized to build integrative networks that provide both genome-wide coverage as well as contextual specificity and accuracy.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a strong genetic basis. Yet, only a small fraction of potentially causal genes-about 65 genes out of an estimated several hundred-are known with strong genetic evidence from sequencing studies. We developed a complementary machine-learning approach based on a human brain-specific gene network to present a genome-wide prediction of autism risk genes, including hundreds of candidates for which there is minimal or no prior genetic evidence.
View Article and Find Full Text PDFMetabolic network rewiring is the rerouting of metabolism through the use of alternate enzymes to adjust pathway flux and accomplish specific anabolic or catabolic objectives. Here, we report the first characterization of two parallel pathways for the breakdown of the short chain fatty acid propionate in Caenorhabditis elegans. Using genetic interaction mapping, gene co-expression analysis, pathway intermediate quantification and carbon tracing, we uncover a vitamin B12-independent propionate breakdown shunt that is transcriptionally activated on vitamin B12 deficient diets, or under genetic conditions mimicking the human diseases propionic- and methylmalonic acidemia, in which the canonical B12-dependent propionate breakdown pathway is blocked.
View Article and Find Full Text PDFIMP (Integrative Multi-species Prediction), originally released in 2012, is an interactive web server that enables molecular biologists to interpret experimental results and to generate hypotheses in the context of a large cross-organism compendium of functional predictions and networks. The system provides biologists with a framework to analyze their candidate gene sets in the context of functional networks, expanding or refining their sets using functional relationships predicted from integrated high-throughput data. IMP 2.
View Article and Find Full Text PDFFunctional Networks of Tissues in Mouse (FNTM) provides biomedical researchers with tissue-specific predictions of functional relationships between proteins in the most widely used model organism for human disease, the laboratory mouse. Users can explore FNTM-predicted functional relationships for their tissues and genes of interest or examine gene function and interaction predictions across multiple tissues, all through an interactive, multi-tissue network browser. FNTM makes predictions based on integration of a variety of functional genomic data, including over 13 000 gene expression experiments, and prior knowledge of gene function.
View Article and Find Full Text PDFBackground: Genome-wide nucleosome occupancy is negatively related to the average level of transcription factor motif binding based on studies in yeast and several other model organisms. The degree to which nucleosome-motif interactions relate to phenotypic changes across species is, however, unknown.
Results: We address this challenge by generating nucleosome positioning and cell cycle expression data for Saccharomyces bayanus and show that differences in nucleosome occupancy reflect cell cycle expression divergence between two yeast species, S.