Background: Brain metastases account for more than 50% of all intracranial tumors and are associated with poor outcomes. Treatment decisions in this highly heterogenous cohort remain controversial due to the myriad of treatment options available, and there is no clearly defined standard of care. The prognosis in brain metastasis patients varies widely with tumor type, extracranial disease burden and patient performance status.
View Article and Find Full Text PDFIntroduction: Gliomas are the most common primary tumour of the central nervous system (CNS), with an estimated annual incidence of 6.6 per 100 000 individuals in the USA and around 14 deaths per day from brain tumours in the UK. The genomic and biological landscape of brain tumours has been increasingly defined and, since 2016, the WHO classification of tumours of the CNS incorporates molecular data, along with morphology, to define tumour subtypes more accurately.
View Article and Find Full Text PDFBackground: Glioblastoma (GB) is the most common intrinsic brain cancer and is notorious for its aggressive nature. Despite widespread research and optimization of clinical management, the improvement in overall survival has been limited. The aim of this study was to characterize the impact of service reconfiguration on GB outcomes in a single centre.
View Article and Find Full Text PDFIntroduction: 5-aminolevulinic acid (5-ALA) is a proagent developed for fluorescent-guided surgery for high-grade glioma patients associated with a significant increase in resection conferring survival. 5-ALA was shown to penetrate the blood-brain barrier accumulating in malignant glioma cells with high selectivity, sensitivity and positive predictive value. However, those have yet to be explored aiding diagnosis for tumours of the central nervous system (CNS) other than high-grade gliomas (HGG).
View Article and Find Full Text PDFBackground: The insular cortex is an eloquent island of mesocortex surrounded by vital structures making this region relatively challenging to neurosurgeons. Historically, lesions in this region were considered too high risk to approach given the strong chance of poor surgical outcome. Advances in recent decades have meant that surgeons can more safely access this eloquent region.
View Article and Find Full Text PDFObjective: Anteromesial temporal lobe resection (ATLR) results in long-term seizure freedom in patients with drug-resistant focal mesial temporal lobe epilepsy (MTLE). There is significant anatomical variation in the anterior projection of the optic radiation (OR), known as Meyer's loop, between individuals and between hemispheres in the same individual. Damage to the OR results in contralateral superior temporal quadrantanopia that may preclude driving in 33%-66% of patients who achieve seizure freedom.
View Article and Find Full Text PDFObjective: To determine how the first wave of the COVID-19 pandemic affected outcomes for all operatively managed neurosurgical patients, not only those positive for SARS-CoV-2.
Design: Matched cohort (pairwise method).
Setting: A single tertiary neurosurgical referral centre at a large UK Major Trauma Centre.
Diffuse gliomas are the most frequent brain tumours, representing 75% of all primary malignant brain tumours in adults. Because of their locally aggressive behaviour and the fact that they cannot be cured by current therapies, they represent one of the most devastating cancers. The present review summarises recent advances in our understanding of glioma development and progression by use of various in vitro and in vivo models, as well as more complex techniques including cultures of 3D organoids and organotypic slices.
View Article and Find Full Text PDFJ Neurol Surg A Cent Eur Neurosurg
January 2021
Maximal safe resection is an essential part of the multidisciplinary care of patients with glioblastoma. A growing body of data shows that gross total resection is an independent prognostic factor associated with improved clinical outcome. The relationship between extent of glioblastoma (GB) resection and clinical benefit depends critically on the balance between cytoreduction and avoiding neurologic morbidity.
View Article and Find Full Text PDFObjectives: Pressures on healthcare systems due to COVID-19 has impacted patients without COVID-19 with surgery disproportionally affected. This study aims to understand the impact on the initial management of patients with brain tumours by measuring changes to normal multidisciplinary team (MDT) decision making.
Design: A prospective survey performed in UK neurosurgical units performed from 23 March 2020 until 24 April 2020.
Objective: The accuracy of stereoelectroencephalography (SEEG) electrode implantation is an important factor in maximizing its safety. The authors established a quality assurance (QA) process to aid advances in implantation accuracy.
Methods: The accuracy of three consecutive modifications of a frameless implantation technique was quantified in three cohorts comprising 22, 8, and 23 consecutive patients.
Aims: Lumbosacral lipomas (LSL) are congenital disorders of the terminal spinal cord region that have the potential to cause significant spinal cord dysfunction in children. They are of unknown embryogenesis with variable clinical presentation and natural history. It is unclear whether the spinal cord dysfunction reflects a primary developmental dysplasia or whether it occurs secondarily to mechanical traction (spinal cord tethering) with growth.
View Article and Find Full Text PDFIn high-grade glioma surgery, tumor resection is often guided by intraoperative fluorescence imaging. 5-aminolevulinic acid-induced protoporphyrin IX (PpIX) provides fluorescent contrast between normal brain tissue and glioma tissue, thus achieving improved tumor delineation and prolonged patient survival compared with conventional white-light-guided resection. However, commercially available fluorescence imaging systems rely solely on visual assessment of fluorescence patterns by the surgeon, which makes the resection more subjective than necessary.
View Article and Find Full Text PDFBackground: Inevitable deterioration due to mechanical tethering is perceived as the natural history for complex congenital spinal lipomas of the conus medullaris region, even if asymptomatic at presentation. The conventional wisdom that prophylactic surgical untethering improves outcome has been challenged recently [1, 2]. This study examines the natural history of asymptomatic un-operated children with lumbosacral lipomas (LSL) and investigates whether predictive factors herald deterioration.
View Article and Find Full Text PDFA target presented on a background of dynamic noise disappears from awareness after a few seconds of maintained peripheral viewing. Whereas the effects of bottom-up factors in such filling-in are well documented, the roles of different top-down functions remain relatively unexplored. Here, we investigated the roles of attention and working memory (WM) by manipulating load in concurrent tasks while participants reported filling-in of a peripheral target.
View Article and Find Full Text PDFNitric oxide (NO) signal transduction occurs through guanylyl cyclase-coupled receptors, which exist in both cytosolic and membranous locations. It has recently been reported from experiments using heart tissue that the membrane-associated receptor has enhanced sensitivity to NO. Owing to its potential importance, we tested this finding using a method of applying NO in known, constant concentrations.
View Article and Find Full Text PDFThe signaling molecule nitric oxide (NO) could engage multiple pathways to influence cellular function. Unraveling their relative biological importance has been difficult because it has not been possible to administer NO under the steady-state conditions that are normally axiomatic for analyzing ligand-receptor interactions and downstream signal transduction. To address this problem, we devised a chemical method for generating constant NO concentrations, derived from balancing NO release from a NONOate donor with NO consumption by a sink.
View Article and Find Full Text PDF1. Physiological nitric oxide (NO) signal transduction occurs through activation of guanylyl cyclase (GC)-coupled receptors, resulting in cGMP accumulation. There are five possible receptors: four heterodimers (alpha1beta1, alpha2beta1, alpha1beta2, alpha2beta2) and a presumed homodimer (nubeta2).
View Article and Find Full Text PDFPhysiologically, nitric oxide (NO) signal transduction occurs through soluble guanylyl cyclase (sGC), which catalyses cyclic GMP (cGMP) formation. Knowledge of the kinetics of NO-evoked cGMP signals is therefore critical for understanding how NO signals are decoded. Studies on cerebellar astrocytes showed that sGC undergoes a desensitizing profile of activity, which, in league with phosphodiesterases (PDEs), was hypothesized to diversify cGMP responses in different cells.
View Article and Find Full Text PDF