In contaminated aquatic ecosystems, it is expected that organisms suffer some effects caused by the contaminants. However, for mobile organisms inhabiting heterogeneously contaminated ecosystems, the continuous exposure to contaminants can be avoided by moving to less contaminated habitats. The present study evaluated the habitat selection of the freshwater shrimp Atyaephyra desmarestii experimentally exposed to different copper concentrations to verify whether the heterogeneous contamination distribution and the connectivity between habitats with different copper levels could generate a random population distribution similar to metapopulation.
View Article and Find Full Text PDFAquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection.
View Article and Find Full Text PDFHabitat selection by fish is the outcome of a choice between different stimuli. Typically, the presence of food tends to attract organisms, while contamination triggers an avoidance response to prevent toxic effects. Given that both food and contaminants are not homogeneously distributed in the environment and that food can be available in contaminated zones, a key question has been put forward in the present study: does a higher availability of food in contaminated areas interfere in the avoidance response to contaminants regardless of the contamination level? Tilapia fry (Oreochromis sp.
View Article and Find Full Text PDFThe present study focuses on avoidance response to predict population decline of the marine fish Rachycentron canadum (cobia) and larvae of the estuarine shrimp Litopenaeus vannamei (whiteleg shrimp). Avoidance of approximately 60% was recorded for the cobia fry exposed to 1.0 mg Cu/L, 1.
View Article and Find Full Text PDF