Publications by authors named "Victoria V Shumyantseva"

This study aimed to investigate whether the water-soluble pharmaceutical form of phosphatidylcholine nanoparticles (wPC) stimulated the catalytic activity of CYP enzymes 2C9 and 2D6. We have shown that electroenzymatic CYP2C9 catalysis to nonsteroidal anti-inflammatory drug naproxen as a substrate was enhanced from 100% to 155% in the presence of wPC in media. Electroenzymatic CYP2D6 activity in the presence of the adrenoceptor-blocking agent bisoprolol as a substrate was elevated significantly from 100% to 144% when wPC was added to potassium phosphate buffer solution.

View Article and Find Full Text PDF

The main aim of our experiments was to demonstrate the suitability of cell-based biosensors for searching for new anticancer medicinal preparations. The effect of the substance doxorubicin, doxorubicin embedded in phospholipid nanoparticles, and doxorubicin with phospholipid nanoparticles modified by targeting vectors (cRGD and folic acid) on dsDNA and breast cancer cell lines (MCF-7, MDA-MB-231) was studied. In the obtained doxorubicin nanoforms, the particle size was less than 60 nm.

View Article and Find Full Text PDF

In this work, we conducted a study of the interaction between DNA and favipiravir (FAV). This chemotherapeutic compound is an antiviral drug for the treatment of COVID-19 and other infections caused by RNA viruses. This paper examines the electroanalytical characteristics of FAV.

View Article and Find Full Text PDF

The review discusses electrochemical methods for analysis of drug interactions with DNA. The electroanalysis method is based on the registration of interaction-induced changes in the electrochemical oxidation potential of heterocyclic nitrogenous bases in the DNA molecule and in the maximum oxidation current amplitude. The mechanisms of DNA-drug interactions can be identified based on the shift in the electrooxidation potential of heterocyclic nitrogenous bases toward more negative (cathodic) or positive (anodic) values.

View Article and Find Full Text PDF

We discuss the diverse functions of proteases in the context of their biotechnological and medical significance, as well as analytical approaches used to determine the functional activity of these enzymes. An insight into modern approaches to studying the kinetics and specificity of proteases, based on spectral (absorption, fluorescence), mass spectrometric, immunological, calorimetric, and electrochemical methods of analysis is given. We also examine in detail electrochemical systems for determining the activity and specificity of proteases.

View Article and Find Full Text PDF

The aim of this work was to develop an electrochemical approach for the analysis of DNA degradation and fragmentation in apoptotic cells. DNA damage is considered one of the major causes of human diseases. We analyzed the cleavage processes of the circular plasmid pTagGFP2-N and calf thymus DNA, which were exposed to restriction endonucleases (the restriction endonucleases BstMC I and AluB I and the nonspecific endonuclease I).

View Article and Find Full Text PDF

We describe a bielectrode system for evaluation of the electrocatalytic activity of cytochrome P450 2E1 (CYP2E1) towards chlorzoxazone. One electrode of the system was employed to immobilize Bactosomes with human CYP2E1, cytochrome P450 reductase (CPR), and cytochrome (cyt ). The second electrode was used to quantify CYP2E1-produced 6-hydroxychlorzoxazone by its direct electrochemical oxidation, registered using square-wave voltammetry.

View Article and Find Full Text PDF

Cytochromes P450 are a unique family of enzymes found in all Kingdoms of living organisms (animals, bacteria, plants, fungi, and archaea), whose main function is biotransformation of exogenous and endogenous compounds. The review discusses approaches to enhancing the efficiency of electrocatalysis by cytochromes P450 for their use in biotechnology and design of biosensors and describes main methods in the development of reconstituted and electrochemical catalytic systems based on the biochemical mechanism of cytochromes P450, as well as and modern trends for their practical application.

View Article and Find Full Text PDF

This study is a continuation of an investigation into the effect of a targeted component, a peptide with an NGR, on the properties of the previously developed doxorubicin phospholipid delivery system. The NGR peptide has an affinity for aminopeptidase N (known as the CD13 marker on the membrane surface of tumor cells) and has been extensively used to target drug delivery systems. This article presents the results of a study investigating the physical properties of the phospholipid composition with and without the peptide chain: particle size, zeta potential, stability in fluids, and dependence of doxorubicin release from nanoparticles at different pH levels (5.

View Article and Find Full Text PDF

The interactions of dsDNA with new targeted drug delivery derivatives of doxorubicin (DOX), such as DOX embedded into phospholipid nanoparticles (NPhs) and DOX with the NGR targeted peptide-modified NPhs were studied electrochemically by differential pulse voltammetry technique. Screen-printed electrodes (SPEs), modified with stable fine dispersions of carbon nanotubes (CNTs), were used for quantitative electrochemical investigations of direct electrochemical oxidation of guanine, adenine, and thymine heterocyclic bases of dsDNA, and their changes in the presence of DOX nanoderivatives. Analysing the shifts of peak potentials of nucleobases in the presence of drug, we have shown that the doxorubicin with NGR targeted peptide changed the mode of interaction in DNA-drug complexes from intercalative to electrostatic.

View Article and Find Full Text PDF

In the present work, screen-printed electrodes (SPE) modified with a synthetic surfactant, didodecyldimethylammonium bromide (DDAB) and streptolysin O (SLO) were prepared for cytochrome P450 3A4 (CYP3A4) immobilization, direct non-catalytic and catalytic electrochemistry. The immobilized CYP3A4 demonstrated a pair of redox peaks with a formal potential of -0.325 ± 0.

View Article and Find Full Text PDF

In this work, we proposed a biosensor for trypsin proteolytic activity assay using immobilization of model peptides on screen-printed electrodes (SPE) modified with gold nanoparticles (AuNPs) prepared by electrosynthetic method. Sensing of proteolytic activity was based on electrochemical oxidation of tyrosine residues of peptides. We designed peptides containing N-terminal cysteine residue for immobilization on an SPE, modified with gold nanoparticles, trypsin-specific cleavage site and tyrosine residue as a redox label.

View Article and Find Full Text PDF

The beginning of the twenty-first century witnessed novel breakthrough research directions in the life sciences, such as genomics, transcriptomics, translatomics, proteomics, metabolomics, and bioinformatics. A newly developed single-molecule approach addresses the physical and chemical properties and the functional activity of single (individual) biomacromolecules and viral particles. Within the alternative approach, the combination of "single-molecule approaches" is opposed to "omics approaches".

View Article and Find Full Text PDF

The electrochemically driven cytochrome P450 reactions have great promise as drug sensing device, new drug searching tool and bioreactor with broad synthetic application. In the present work, we proposed approaches for the increasing the efficiency of cytochrome P450 3A4 electrocatalysis, based on fine regulation and reproduction of nature hemeprotein catalytic cycle and electron transfer pathways on electrode. To analyze the comparative electrochemical and electrocatalytic activity, cytochrome P450 3A4 was immobilized on electrodes modified with a membrane-like synthetic surfactant, didodecyldimethylammonium bromide (DDAB).

View Article and Find Full Text PDF

The possibility of the detection of atypical kinetic profiles of drug biotransformation using electrochemical systems based on immobilized cytochromes P450 with phenytoin hydroxylation by cytochrome P450 2C19 (CYP2C19) as an example was evaluated for the first time. For this purpose, we developed an electrochemical system, where one of the electrodes was modified by didodecyldimethylammonium bromide (DDAB) and was used as an electron donor for reduction of heme iron ion of the immobilized CYP2C19 and initiation of the catalytic reaction, while the second electrode was not modified and served for an electrochemical quantitation of 4-hydroxyphenytoin, which is a metabolite of antiepileptic drug phenytoin, by its oxidation peak. It was revealed that the dependence of the rate of 4-hydroxyphenytoin formation on phenytoin concentration is described by the equation for two enzymes or two binding sites indicating the existing of high- and low-affinity forms of the enzyme.

View Article and Find Full Text PDF

Objectives: Human cytochrome P450 3A4 is the most abundant hepatic and intestinal Phase I enzyme that metabolizes approximately 60% marketed drugs. Simultaneous administration of several drugs may result in appearance of drug-drug interaction. Due to the great interest in the combination therapy, the exploration of the role of drug as "perpetrator" or "victim" is important task in pharmacology.

View Article and Find Full Text PDF

Electron transfer in metalloproteins is a driving force for many biological processes and widely distributed in nature. Rubredoxin B (RubB) from Mycobacterium tuberculosis is a first example among [1Fe-0S] proteins that support catalytic activity of terminal sterol-monooxygenases enabling its application in metabolic engineering. To explore the tolerance of RubB to the specific amino acid changes we evaluated the effect of surface mutations on its electrochemical properties.

View Article and Find Full Text PDF

Methods of electrochemical analysis of biological objects based on the reaction of electro-oxidation/electro-reduction of molecules are presented. Polymer nanocomposite materials that modify electrodes to increase sensitivity of electrochemical events on the surface of electrodes are described. Examples of applications electrochemical biosensors constructed with nanocomposite material for detection of biological molecules are presented, advantages and drawbacks of different applications are discussed.

View Article and Find Full Text PDF

The interactions of dsDNA with rifampicin (RF) or with rifampicin after encapsulation in phospholipid micelles (nanosome/rifampicin) (NRF) were studied electrochemically. Screen-printed electrodes (SPEs) modified by stable dispersions of multi-wolled carbon nanotubes (MWCNTs) in aqueous solution of poly(1,2-butadiene)-block-poly(2-(dimethylamino)ethyl methacrylate) (PB-b-PDMAEMA) diblock copolymer were used for quantitative electrochemical investigation of direct electrochemical oxidation of guanine at E = 0.591 V (vs.

View Article and Find Full Text PDF

We have investigated interactions of galeterone and its pharmacologically active metabolite - 3-keto-Δ4-galeterone (D4G) - with one of the key enzymes of corticosteroid biosynthesis - steroid 21-monooxygenase (CYP21A2). It was shown by absorption spectroscopy that both compounds induce type I spectral changes of CYP21A2. Spectral dissociation constants (K ) of complexes of CYP21A2 with galeterone or D4G were calculated as 3.

View Article and Find Full Text PDF

Objectives α-Lipoic acid is used as an antioxidant in multivitamin formulations to restore the normal level of intracellular glutathione after depletion caused by environmental pollutants or during physiological aging of the body, as a chelating agent, as a dietary supplement, in anti-aging compositions. Lipoic acid (LA) acts as a buffer in cancer therapy and in therapy of diseases associated with oxidative stress. The effect of LA on the catalytic functions of cytochrome P450 3A4 as the main enzyme of the biotransformation of drugs was studied.

View Article and Find Full Text PDF

We demonstrate the application of amphiphilic ionic poly(-butylmethacrylate)-- poly(2-(dimethylamino)ethyl methacrylate) diblock copolymers (PBMA--PDMAEMA, PBMA--PDMAEMA, PBMA--PDMAEMA) for dispersing multiwalled carbon nanotubes (MWCNTs) in aqueous media, a subsequent efficient surface modification of screen-printed electrodes (SPEs), and the application of the modified SPEs for DNA electrochemistry. Stable and fine aqueous dispersions of MWCNTs were obtained with PBMA--PDMAEMA diblock copolymers, regardless of the structure of the copolymer and the amount of MWCNTs in the dispersions. The effect of the diblock copolymer structure was important when the dispersions of MWCNTs were deposited as modifying layers on surfaces of SPEs, resulting in considerable increases of the electroactive surface areas and great acceleration of the electron transfer rate.

View Article and Find Full Text PDF

The interactions of pharmacologically active 3-keto-Δ4-metabolite of anticancer drug abiraterone (D4A) with steroid-metabolizing cytochromes P450 (CYP51A1, CYP11A1, CYP19A1) was studied by absorption spectroscopy and molecular docking. Both abiraterone and D4A induce type I spectral changes of CYP51A1, one of the enzymes of cholesterol biosynthesis. We have revealed that D4A did not induce spectral changes of CYP11A1, the key enzyme of pregnenolone biosynthesis, unlike abiraterone (type II ligand of CYP11A1).

View Article and Find Full Text PDF

Potential drug-drug interactions of the antitumor drug abiraterone and the macrolide antibiotic erythromycin were studied at the stage of cytochrome P450 3A4 (CYP3A4) biotransformation. Using differential spectroscopy, we have shown that abiraterone is a type II ligand of CYP3A4. The dependence of CYP3A4 spectral changes on the concentration of abiraterone is sigmoidal, which indicates cooperative interactions of CYP3A4 with abiraterone; these interactions were confirmed by molecular docking.

View Article and Find Full Text PDF