Publications by authors named "Victoria Tyrrell"

Enzymatically oxygenated phospholipids (eoxPL) from lipoxygenases (LOX) or cyclooxygenase (COX) are prothrombotic. Their generation in arterial disease, and their modulation by cardiovascular therapies is unknown. Furthermore, the Lands cycle acyl-transferases that catalyze their formation are unidentified.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists from 34 labs in 19 countries worked together to measure certain fats (ceramides) in human blood using special techniques.
  • They used both standard methods and their own methods to get very accurate and consistent results.
  • The study helps improve future medical tests and treatments by providing reliable information about these fats in blood samples.
View Article and Find Full Text PDF

Oxidized phospholipids (oxPLs) are generated during innate immunity and inflammation, where they play a variety of biological roles, including regulation of autoimmunity and coagulation. Some are generated by enzymatic reactions, leading to stereo- and regiospecificity, while many others can be formed through nonenzymatic oxidation and truncation and can be used as biomarkers of oxidative stress. Mass spectrometry methods have been developed over many years for oxPL analysis, which can provide robust estimations of molecular species and amounts, where standards are available.

View Article and Find Full Text PDF

Background: Clotting, leading to thrombosis, requires interactions of coagulation factors with the membrane aminophospholipids (aPLs) phosphatidylserine and phosphatidylethanolamine. Atherosclerotic cardiovascular disease (ASCVD) is associated with elevated thrombotic risk, which is not fully preventable using current therapies. Currently, the contribution of aPL to thrombotic risk in ASCVD is not known.

View Article and Find Full Text PDF

Cytokines that signal via STAT1 and STAT3 transcription factors instruct decisions affecting tissue homeostasis, antimicrobial host defense, and inflammation-induced tissue injury. To understand the coordination of these activities, we applied RNA sequencing, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing to identify the transcriptional output of STAT1 and STAT3 in peritoneal tissues from mice during acute resolving inflammation and inflammation primed to drive fibrosis. Bioinformatics focused on the transcriptional signature of the immunomodulatory cytokine IL-6 in both settings and examined how profibrotic IFN-γ-secreting CD4+ T cells altered the interpretation of STAT1 and STAT3 cytokine cues.

View Article and Find Full Text PDF

Loss of innervation is a key driver of age associated muscle atrophy and weakness (sarcopenia). Our laboratory has previously shown that denervation induced atrophy is associated with the generation of mitochondrial hydroperoxides and lipid mediators produced downstream of cPLA and 12/15 lipoxygenase (12/15-LOX). To define the pathological impact of lipid hydroperoxides generated in denervation-induced atrophy in vivo, we treated mice with liproxstatin-1, a lipid hydroperoxide scavenger.

View Article and Find Full Text PDF

The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes.

View Article and Find Full Text PDF

Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial β-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo.

View Article and Find Full Text PDF

The protozoan parasite is the causative agent of the neglected tropical disease human African trypanosomiasis, otherwise known as sleeping sickness. Trypanosomes have evolved many immune-evasion mechanisms to facilitate their own survival, as well as prolonging host survival to ensure completion of the parasitic life cycle. A key feature of the bloodstream form of is the secretion of aromatic keto acids, which are metabolized from tryptophan.

View Article and Find Full Text PDF

PGs are important proinflammatory lipid mediators, the significance of which is highlighted by the widespread and efficacious use of nonsteroidal anti-inflammatory drugs in the treatment of inflammation. 4-Octyl itaconate (4-OI), a derivative of the Krebs cycle-derived metabolite itaconate, has recently garnered much interest as an anti-inflammatory agent. In this article, we show that 4-OI limits PG production in murine macrophages stimulated with the TLR1/2 ligand Pam3CSK4.

View Article and Find Full Text PDF

Platelets promote tumor metastasis by inducing promalignant phenotypes in cancer cells and directly contributing to cancer-related thrombotic complications. Platelet-derived extracellular vesicles (EVs) can promote epithelial-mesenchymal transition (EMT) in cancer cells, which confers high-grade malignancy. 12S-hydroxyeicosatetraenoic acid (12-HETE) generated by platelet-type 12-lipoxygenase (12-LOX) is considered a key modulator of cancer metastasis through unknown mechanisms.

View Article and Find Full Text PDF

A complex assembly of lipids including fatty acids, cholesterol, and ceramides is vital to the integrity of the mammalian epidermal barrier. The formation of this barrier requires oxidation of the substrate fatty acid, linoleic acid (LA), which is initiated by the enzyme 12R-lipoxygenase (LOX). In the epidermis, unoxidized LA is primarily found in long-chain acylceramides termed esterified omega-hydroxy sphingosine (EOS)/phytosphingosine/hydroxysphingosine (collectively EOx).

View Article and Find Full Text PDF

The gut microbiota fundamentally regulates intestinal homeostasis and disease partially through mechanisms that involve modulation of regulatory T cells (T), yet how the microbiota-T cross-talk is physiologically controlled is incompletely defined. Here, we report that prostaglandin E (PGE), a well-known mediator of inflammation, inhibits mucosal T in a manner depending on the gut microbiota. PGE through its receptor EP4 diminishes T-favorable commensal microbiota.

View Article and Find Full Text PDF

Tissue factor (TF) is critical for the activation of blood coagulation. TF function is regulated by the amount of externalised phosphatidylserine (PS) and phosphatidylethanolamine (PE) on the surface of the cell in which it is expressed. We investigated the role PS and PE in fibroblast TF function.

View Article and Find Full Text PDF

The alarm cytokine interleukin-1β (IL-1β) is a potent activator of the inflammatory cascade following pathogen recognition. IL-1β production typically requires two signals: first, priming by recognition of pathogen-associated molecular patterns leads to the production of immature pro-IL-1β; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL-1β from its pro-form. However, despite the important role of IL-1β in controlling local and systemic inflammation, its overall regulation is still not fully understood.

View Article and Find Full Text PDF

Background: Common chromosome 9p21 single nucleotide polymorphisms (SNPs) increase coronary heart disease risk, independent of traditional lipid risk factors. However, lipids comprise large numbers of structurally related molecules not measured in traditional risk measurements, and many have inflammatory bioactivities. Here, we applied lipidomic and genomic approaches to 3 model systems to characterize lipid metabolic changes in common Chr9p21 SNPs, which confer ≈30% elevated coronary heart disease risk associated with altered expression of ANRIL, a long ncRNA.

View Article and Find Full Text PDF

Atherosclerosis and its complications are responsible for one in three global deaths. Nutraceuticals show promise in the prevention and treatment of atherosclerosis but require an indepth understanding of the mechanisms underlying their actions. A previous study showed that the omega-6 fatty acid, dihomo-γ-linolenic acid (DGLA), attenuated atherosclerosis in the apolipoprotein E deficient mouse model system.

View Article and Find Full Text PDF

Eicosanoids are critical mediators of fever, pain, and inflammation generated by immune and tissue cells. We recently described a new bioactive eicosanoid generated by cyclooxygenase-1 (COX-1) turnover during platelet activation that can stimulate human neutrophil integrin expression. On the basis of mass spectrometry (MS/MS and MS), stable isotope labeling, and GC-MS analysis, we previously proposed a structure of 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (DXA).

View Article and Find Full Text PDF

Abdominal aortic aneurysm (AAA) is an inflammatory vascular disease with high mortality and limited treatment options. How blood lipids regulate AAA development is unknown. Here lipidomics and genetic models demonstrate a central role for procoagulant enzymatically oxidized phospholipids (eoxPL) in regulating AAA.

View Article and Find Full Text PDF
Article Synopsis
  • Hemostatic defects require coagulation factors and a phospholipid surface for clot formation, and the study identifies that oxidized phospholipids (HETE-PLs) from immune cells can restore the ability to stop bleeding in both human and mouse models of bleeding disorders.
  • HETE-PLs significantly reduced blood loss in mouse hemophilia A and improved blood coagulation in human plasma with various factor deficiencies, indicating their potential therapeutic role in treating bleeding conditions.
  • The research demonstrated that HETE-PLs enhance the activity of critical coagulation complexes and may improve factor binding and accessibility, suggesting they could be useful in managing bleeding disorders effectively.
View Article and Find Full Text PDF

Blood coagulation functions as part of the innate immune system by preventing bacterial invasion, and it is critical to stopping blood loss (hemostasis). Coagulation involves the external membrane surface of activated platelets and leukocytes. Using lipidomic, genetic, biochemical, and mathematical modeling approaches, we found that enzymatically oxidized phospholipids (eoxPLs) generated by the activity of leukocyte or platelet lipoxygenases (LOXs) were required for normal hemostasis and promoted coagulation factor activities in a Ca- and phosphatidylserine (PS)-dependent manner.

View Article and Find Full Text PDF

Type 2-associated goblet cell hyperplasia and mucus hypersecretion are well known features of asthma. 15-Lipoxygenase-1 (15LO1) is induced by the type 2 cytokine IL-13 in human airway epithelial cells (HAECs) in vitro and is increased in fresh asthmatic HAECs ex vivo. 15LO1 generates a variety of products, including 15-hydroxyeicosatetraenoic acid (15-HETE), 15-HETE-phosphatidylethanolamine (15-HETE-PE), and 13-hydroxyoctadecadienoic acid (13-HODE).

View Article and Find Full Text PDF

. The myeloid enzyme 12/15-lipoxygenase (LOX), which generates bioactive oxidized lipids, has been implicated in numerous inflammatory diseases, with several studies demonstrating an improvement in pathology in mice lacking the enzyme. However, the ability of 12/15-LOX to directly regulate B cell function has not been studied.

View Article and Find Full Text PDF

Activated platelets generate an eicosanoid proposed to be 8-hydroxy-9,10-dioxolane A3 (DXA). Herein, we demonstrate that significant amounts of DXA are rapidly attached to phosphatidylethanolamine (PE) forming four esterified eicosanoids, 16:0p, 18:0p, 18:1p and 18:0a/DXA-PEs that can activate neutrophil integrin expression. These lipids comprise the majority of DXA generated by platelets, are formed in ng amounts (24.

View Article and Find Full Text PDF