Bacterial periplasmic binding proteins (PBPs) undergo a pronounced ligand-induced conformational change which can be employed to monitor ligand concentrations. The most common strategy to take advantage of this conformational change for a biosensor design is to use a Förster resonance energy transfer (FRET) signal. This can be achieved by attaching either two fluorescent proteins (FPs) or two organic fluorescent dyes of different colors to the PBPs in order to obtain an optical readout signal which is closely related to the ligand concentration.
View Article and Find Full Text PDFGenetically encoded Förster resonance energy transfer (FRET)-based biosensors for the quantification of ligand molecules change the magnitude of FRET between two fluorescent proteins upon binding a target metabolite. When highly sensitive sensors are being designed, extensive sensor optimization is essential. However, it is often difficult to verify the ideas of modifications made to a sensor during the sensor optimization process because of the limited information content of ensemble FRET measurements.
View Article and Find Full Text PDFThe fast development of microbial production strains for basic and fine chemicals is increasingly carried out in small scale cultivation systems to allow for higher throughput. Such parallelized systems create a need for new rapid online detection systems to quantify the respective target compound. In this regard, biosensors, especially genetically encoded Förster resonance energy transfer (FRET)-based biosensors, offer tremendous opportunities.
View Article and Find Full Text PDFA broad range of genetically-encoded fluorescence biosensors has been developed, allowing the detection of signaling intermediates and metabolites in real time. Many of these biosensors are based on Foerster Resonance Energy Transfer (FRET). The two biosensors of the well-known "Venus-flytrap" type exemplarily studied in this work are composed of a central sugar binding protein flanked by two green fluorescent protein derivatives, namely ECFP as well as Citrine and EYFP, respectively.
View Article and Find Full Text PDFBackground: Since volatile and rising cost factors such as energy, raw materials and market competitiveness have a significant impact on the economic efficiency of biotechnological bulk productions, industrial processes need to be steadily improved and optimized. Thereby the current production hosts can undergo various limitations. To overcome those limitations and in addition increase the diversity of available production hosts for future applications, we suggest a Production Strain Blueprinting (PSB) strategy to develop new production systems in a reduced time lapse in contrast to a development from scratch.
View Article and Find Full Text PDF