Publications by authors named "Victoria Sodre"

Lignin is an aromatic biopolymer found in plant cell walls and is the most abundant source of renewable aromatic carbon in the biosphere. Hence there is considerable interest in the conversion of lignin, either derived from agricultural waste or produced as a byproduct of pulp/paper manufacture, into high-value chemicals. Although lignin is rather inert, due to the presence of ether C-O and C-C linkages, several microbes are able to degrade lignin.

View Article and Find Full Text PDF

A LigE-type beta-etherase enzyme from lignin-degrading Agrobacterium sp. has been identified, which assists degradation of polymeric lignins. Testing against lignin dimer model compounds revealed that it does not catalyse the previously reported reaction of Sphingobium SYK-6 LigE, but instead shows activity for a β-5 phenylcoumaran lignin dimer.

View Article and Find Full Text PDF

To improve the titre of lignin-derived pyridine-dicarboxylic acid (PDCA) products in engineered Rhodococcus jostii RHA1 strains, plasmid-based overexpression of seven endogenous and exogenous lignin-degrading genes was tested. Overexpression of endogenous multi-copper oxidases mcoA, mcoB, and mcoC was found to enhance 2,4-PDCA production by 2.5-, 1.

View Article and Find Full Text PDF

Pathways by which the biopolymer lignin is broken down by soil microbes could be used to engineer new biocatalytic routes from lignin to renewable chemicals, but are currently not fully understood. In order to probe these pathways, we have prepared synthetic lignins containing C at the sidechain β-carbon. Feeding of [β-C]-labelled DHP lignin to RHA1 has led to the incorporation of C label into metabolites oxalic acid, 4-hydroxyphenylacetic acid, and 4-hydroxy-3-methoxyphenylacetic acid, confirming that they are derived from lignin breakdown.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel strain of yeast, Rhodosporidium fluviale LM-2, shows promise for lignin degradation, with identified enzymes and two specific catabolic pathways for producing valuable compounds like 4-vinyl guaiacol and vanillin.
  • * The study provides detailed insights into the genetics, transcripts, and proteins involved in lignin breakdown in R. fluviale LM-2, suggesting its potential for genetic engineering and application in other organisms for lignin valorization.
View Article and Find Full Text PDF

The ferulic acid (FA) represents a high-value molecule with applications in the cosmetic and pharmaceutical industries. This aromatic molecule is derived from lignin and can be enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. This process starts with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases.

View Article and Find Full Text PDF

The biocatalytic production of fuels and chemicals from plant biomass represents an attractive alternative to fossil fuel-based refineries. In this context, the mining and characterization of novel biocatalysts can promote disruptive innovation opportunities in the field of lignocellulose conversion and valorization. In the present work, we conducted the biochemical and structural characterization of two novel hydroxycinnamic acid catabolic enzymes, isolated from a lignin-degrading microbial consortium, a feruloyl-CoA synthetase, and a feruloyl-CoA hydratase-lyase, named LM-FCS2 and LM-FCHL2, respectively.

View Article and Find Full Text PDF

Although lignocellulose is the most abundant and renewable natural resource for biofuel production, its use remains under exploration because of its highly recalcitrant structure. Its deconstruction into sugar monomers is mainly driven by carbohydrate-active enzymes (CAZymes). To develop highly efficient and fast strategies to discover biomass-degrading enzymes for biorefinery applications, an enrichment process combined with integrative omics approaches was used to identify new CAZymes.

View Article and Find Full Text PDF

The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids.

View Article and Find Full Text PDF

In the context of increasing demand for renewable alternatives of fuels and chemicals, the valorization of lignin emerges as a value-adding strategy in biorefineries and an alternative to petroleum-derived molecules. One of the compounds derived from lignin is ferulic acid (FA), which can be converted into valuable molecules such as vanillin. In microorganisms, FA biotransformation into vanillin can occur via a two-step reaction catalyzed by the sequential activity of a feruloyl-CoA synthetase (FCS) and an feruloyl-CoA hydratase-lyase (FCHL), which could be exploited industrially.

View Article and Find Full Text PDF

Ferulic acid (FA), a low-molecular weight aromatic compound derived from lignin, represents a high-value molecule, used for applications in the cosmetic and pharmaceutical industries. FA can be further enzymatically converted in other commercially interesting molecules, such as vanillin and bioplastics. In several organisms, these transformations often start with a common step of FA activation via CoA-thioesterification, catalyzed by feruloyl-CoA synthetases (Fcs).

View Article and Find Full Text PDF