Chimeric antigen receptor (CAR) T cells represent a novel targeted approach to overcome both quantitative and qualitative shortfalls of the host immune system relating to the detection and subsequent destruction of tumors. The identification of antigens expressed specifically on the surface of tumor cells is a critical first step in the ability to utilize CAR T cells for the treatment of cancer. The 5T4 is a tumor-associated antigen which is expressed on the cell surface of most solid tumors including ovarian cancer.
View Article and Find Full Text PDFT cells engrafted with chimeric AgRs (CAR) are showing exciting potential for targeting B cell malignancies in early-phase clinical trials. To determine whether the second-generation CAR was essential for optimal antitumor activity, two CD28-based CAR constructs targeting CD19 were tested for their ability to redirect mouse T cell function against established B cell lymphoma in a BALB/c syngeneic model system. T cells armed with either CAR eliminated A20 B cell lymphoma in vivo; however, one construct induced a T cell dose-dependent acute toxicity associated with a raised serum Th1 type cytokine profile on transfer into preconditioned mice.
View Article and Find Full Text PDFThe expression of two or more genes from a single viral vector has been widely used to label or select for cells containing the transgenic element. Identification of the foot-and-mouth disease virus (FMDV) 2A cleavage peptide as a polycistronic linker capable of producing equivalent levels of transgene expression has greatly improved this approach in the field of gene therapy. However, as a consequence of 2A posttranslational cleavage the upstream protein is left with a residual 19 amino acids from the 2A sequence on its carboxy terminus, and the downstream protein is left with an additional 2 to 5 amino acids on its amino terminus.
View Article and Find Full Text PDFBackground: Radiotherapy for the control of cancer, either alone or in conjunction with chemotherapy, is often limited by normal tissue toxicity including haematopoietic toxicity. Exposure of cells to ionizing radiation leads to the formation of reactive oxygen species that are associated with radiation-induced cytotoxicity. The antioxidant enzyme manganese superoxide dismutase (SOD2) catalyzes the dismutation of the superoxide anions into hydrogen peroxide.
View Article and Find Full Text PDF