Several cross-sectional trials have revealed increased arterial stiffness connected with the cardiac autonomic neuropathy in types 2 and 1 diabetic patients. The pathophysiological relationship between arterial stiffness and autonomic dysfunction in diabetes mellitus is still underinvestigated and the question whether the presence of cardiac autonomic neuropathy leads to arterial stiffening or increased arterial stiffness induced autonomic nervous system impairment is still open. Both arterial stiffness and dysfunction of the autonomic nervous system have common pathogenetic pathways, counting state of the chronic hyperinsulinemia and hyperglycemia, increased formation of advanced glycation end products, activation of protein kinase C, development of endothelial dysfunction, and chronic low-grade inflammation.
View Article and Find Full Text PDFSignificantly underdiagnosed, diabetes-associated cardiac autonomic neuropathy (CAN) causes a wide range of cardiac disorders that may cause life-threatening outcomes. This study investigated the effects of alpha-lipoic acid (ALA) on arterial stiffness and insulin resistance (IR) parameters in type 2 diabetes mellitus (T2D) patients and definite CAN. A total of 36 patients with T2D and a definite stage of CAN were recruited.
View Article and Find Full Text PDFMicrovascular complications are responsible for a major proportion of the burden associated with diabetes contributing to substantial morbidity, mortality, and healthcare burden in people with diabetes. Retinopathy, nephropathy, and neuropathy constitute the leading causes of blindness, end-stage renal disease, and lower-extremity amputations, respectively. Since the efficacy of causal therapies of diabetic microvascular complications is limited, especially in type 2 diabetes, there is an unmet need for adjunct treatments which should be effective despite ongoing hyperglycemia.
View Article and Find Full Text PDFCardiac autonomic neuropathy (CAN) is a serious complication of diabetes mellitus (DM) that is strongly associated with approximately five-fold increased risk of cardiovascular mortality. CAN manifests in a spectrum of things, ranging from resting tachycardia and fixed heart rate (HR) to development of "silent" myocardial infarction. Clinical correlates or risk markers for CAN are age, DM duration, glycemic control, hypertension, and dyslipidemia (DLP), development of other microvascular complications.
View Article and Find Full Text PDFAim: To compare anthropometric parameters, body composition, hormonal and inflammatory profiles, oxidative stress indices, and heart rate variability (HRV) in Heliobacter pylori (H.pylori) positive and negative healthy sedentary participants.
Methods: Among 30 recruited apparently healthy male participants (age between 20 and 40) enrolled in this cross-sectional study, 18 were H.
Introduction: Sedentary lifestyle is a major risk factor for diabetes, cardiovascular and many other age-related diseases. Heart rate variability (HRV) reflects the function of regulatory systems of internal organs and may sensitively indicate early metabolic disturbances. We hypothesize that quantitative and qualitative changes of HRV in young subjects may reflect early metabolic derangements responsible for further development of clinically significant disease.
View Article and Find Full Text PDFCardiac autonomic neuropathy (CAN) is a serious and common complication of diabetes mellitus (DM). Despite its relationship to an increased risk of cardiovascular mortality and its association with multiple symptoms and impairments, the significance of CAN has not been fully appreciated. CAN among DM patients is characterized review the latest evidence and own data regarding the treatment and the treatment perspectives for diabetic CAN.
View Article and Find Full Text PDF