Publications by authors named "Victoria Robert-Gostlin"

Metabolic programming underpins inflammation and liver macrophage activation in the setting of chronic liver disease. Here, we sought to identify the role of an important metabolic regulator, AMP-activated protein kinase (AMPK), specifically within myeloid cells during the progression of non-alcoholic steatohepatitis (NASH) and whether treatment with metformin, a firstline therapy for diabetes and activator of AMPK could stem disease progression. Male and female Prkaa1/Prkaa2 (Flox) control and Flox-LysM-Cre (MacKO) mice were fed a low-fat control or a choline-deficient, amino acid defined 45% Kcal high-fat diet (CDAHFD) for 8 weeks, where metformin was introduced in the drinking water (50 or 250 mg/kg/day) for the last 4 weeks.

View Article and Find Full Text PDF

Accumulating evidence indicates that the adverse neuroimmune activation of microglia, brain immunocytes that support neurons, contributes to a range of neuroinflammatory disorders, including Alzheimer's disease. Correcting the abnormal functions of microglia is a potential therapeutic strategy for these diseases. Nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor (NLRP) 3 inflammasomes are implicated in adverse microglial activation and their inhibitors, such as the natural compounds oridonin and shikonin, reduce microglial immune responses.

View Article and Find Full Text PDF

Type 2 cytokines like IL-4 are hallmarks of helminth infection and activate macrophages to limit immunopathology and mediate helminth clearance. In addition to cytokines, nutrients and metabolites critically influence macrophage polarization. Choline is an essential nutrient known to support normal macrophage responses to lipopolysaccharide; however, its function in macrophages polarized by type 2 cytokines is unknown.

View Article and Find Full Text PDF

Astrocytes are the main support cells of the central nervous system. They also participate in neuroimmune reactions. In response to pathological and immune stimuli, astrocytes transform to reactive states characterized by increased release of inflammatory mediators.

View Article and Find Full Text PDF