Apolipoprotein A-IV (apoA-IV) is synthesized by intestinal enterocytes during lipid absorption and secreted into lymph on the surface of nascent chylomicrons. A compelling body of evidence supports a central role of apoA-IV in facilitating intestinal lipid absorption and in regulating satiety, yet a longstanding conundrum is that no abnormalities in fat absorption, feeding behavior, or weight gain were observed in chow-fed apoA-IV knockout (A4KO) mice. Herein we reevaluated the impact of apoA-IV expression in C57BL6 and A4KO mice fed a high-fat diet.
View Article and Find Full Text PDFThe T347S polymorphism in the human apolipoprotein (apo) A-IV gene is present at high frequencies among all the world's populations. Carriers of a 347S allele exhibit faster clearance of triglyceride-rich lipoproteins, greater adiposity, and increased risk for developing atherosclerosis, which suggests that this conservative amino acid substitution alters the structure of apo A-IV. Herein we have used spectroscopic and surface chemistry techniques to examine the structure, stability, and interfacial properties of the apo A-IV 347S isoprotein.
View Article and Find Full Text PDFHuman apolipoprotein A-V (apoA-V) is a potent modulator of plasma triacylglycerol (TG) levels. To probe different regions of this 343-amino-acid protein, four single Trp apoA-V variants were prepared. The variant with a Trp at position 325, distal to the tetraproline sequence at residues 293-296, displayed an 11-nm blue shift in wavelength of maximum fluorescence emission upon lipid association.
View Article and Find Full Text PDFThe amino-terminal 20.1% of apolipoprotein B (apoB20.1; residues 1-912) is sufficient to initiate and direct the formation of nascent apoB-containing lipoprotein particles.
View Article and Find Full Text PDFApolipoprotein A-I (apoA-I), the major protein in high density lipoprotein (HDL) regulates cholesterol homeostasis and is protective against atherosclerosis. An examination of the amino acid sequence of apoA-I among 21 species shows a high conservation of positively and negatively charged residues within helix 6, a domain responsible for regulating the rate of cholesterol esterification in plasma. These observations prompted an investigation to determine if charged residues in helix 6 maintain a structural conformation for protein-protein interaction with lecithin-cholesterol acyltransferase (LCAT) the enzyme for which apoA-I acts as a cofactor.
View Article and Find Full Text PDFApolipoprotein A-V (apoA-V), the newest member of the plasma apolipoprotein family, was recently discovered by comparison of the mouse and human genomes. Studies in rodents and population surveys of human apoA-V polymorphisms have noted a strong effect of apoA-V on plasma triglyceride levels. Toward the elucidation of the biologic function of apoA-V, we used spectroscopic and surface chemistry techniques to probe its structure and interfacial activity.
View Article and Find Full Text PDFWe used a panel of recombinant human apolipoprotein (apo) A-IV truncation mutants, in which pairs of 22-mer alpha-helices were sequentially deleted along the primary sequence, to examine the impact of protein structure and interfacial activity on the ability of apoA-IV to activate cholesterol ester transfer protein. Circular dichroism and fluorescence spectroscopy revealed that the secondary structure, conformation, and molecular stability of recombinant human apoA-IV were identical to the native protein. However, deletion of any of the alpha-helical domains in apoA-IV disrupted its tertiary structure and impaired its molecular stability.
View Article and Find Full Text PDF