Publications by authors named "Victoria Piunova"

Aliphatic polycarbonates represent an important class of materials with diverse applications ranging from battery electrolytes, polyurethane intermediates, and materials for biomedical applications. These materials can be produced via the ring-opening polymerization (ROP) of six- to eight-membered cyclic carbonates derived from precursor 1,3- and 1,5-diols. These diols can contain a range of functional groups depending on the desired thermal, mechanical, and solution properties.

View Article and Find Full Text PDF
Article Synopsis
  • Biofouling on medical devices and biosensors significantly impacts performance and longevity, necessitating effective coatings to combat this issue.
  • Poly(ethylene glycol) and zwitterionic polymers are traditional solutions, but new research explores polyacrylamide-based copolymer hydrogels through high-throughput screening, revealing some nonintuitive compositions outperform existing standards.
  • The study leverages machine learning to understand the molecular features of these hydrogels, which demonstrate superior anti-biofouling abilities in both lab models and live rodent tests, potentially enhancing the functionality and lifespan of in vivo sensing devices.
View Article and Find Full Text PDF

Assembly from ultrasmall solution droplets follows a different dynamic from that of larger scales. Using an independently controlled microfluidic probe in an atomic force microscope, subfemtoliter aqueous droplets containing polymers produce well-defined features with dimensions as small as tens of nanometers. The initial shape of the droplet and the concentration of solute within the droplet play significant roles in the final assembly of polymers due to the ultrafast evaporation rate and spatial confinement by the small droplets.

View Article and Find Full Text PDF

We present an all-atom molecular dynamics study of the effect of a range of organic solvents (dichloromethane, diethyl ether, toluene, methanol, dimethyl sulfoxide, and tetrahydrofuran) on the conformations of a nanogel star polymeric nanoparticle with solvophobic and solvophilic structural elements. These nanoparticles are of particular interest for drug delivery applications. As drug loading generally takes place in an organic solvent, this work serves to provide insight into the factors controlling the early steps of that process.

View Article and Find Full Text PDF

Star polymers with a cross-linked nanogel core are promising carriers of cargo for therapeutic applications due to the synthetic control of amphiphilicity of arms and stability at infinite dilution. Three nanogel-core star polymers were investigated to understand how the arm-block chemical structure controls loading efficiency of a model drug, ibuprofen, and its spatial distribution. The spatial distribution profiles of hydrophobic core, hydrophilic corona, and encapsulated drug were determined by small-angle neutron scattering (SANS).

View Article and Find Full Text PDF

We present a molecular dynamics study of the effect of core chemistry on star polymer structural and kinetic properties. This work serves to validate the choice of a model adamantane core used in previous simulations to represent larger star polymeric systems in an aqueous environment, as well as to explore how the choice of size and core chemistry using a dendrimer or nanogel core may affect these polymeric nanoparticle systems, particularly with respect to thermosensitivity and solvation properties that are relevant for applications in drug loading and delivery.

View Article and Find Full Text PDF

To develop a detailed picture of the microscopic structure of gelcore star polymers and to elucidate parameters of the synthetic process that might be exploited to control this structure, simulations of their synthesis were performed that were based on a particular synthetic approach. A range of results was observed from gelation at high reactant concentrations to the formation of various sizes and compositions of star polymers. Contrary to the prevailing experimental viewpoint, the simulations always suggest the production of a broad distribution of star polymer sizes.

View Article and Find Full Text PDF

Dendronized block copolymers were synthesized by ruthenium-mediated ring-opening methathesis polymerization of exo-norbornene functionalized dendrimer monomers, and their self-assembly to dielectric mirrors was investigated. The rigid-rod main-chain conformation of these polymers drastically lowers the energetic barrier for reorganization, enabling their rapid self-assembly to long-range, highly ordered nanostructures. The high fidelity of these dielectric mirrors is attributed to the uniform polymer architecture achieved from the construction of discrete dendritic repeat units.

View Article and Find Full Text PDF

Colorful: enabled by their reduced capacity for chain entanglement, high-molecular-weight brush block copolymers can rapidly self-assemble to photonic crystals. The blending of two polymers of different molecular weight can predictably modulate the sizes of the polymer domains, giving rise to a facile means of precision tuning of these photonic-band-gap materials.

View Article and Find Full Text PDF

The synthesis of rigid-rod, helical isocyanate-based macromonomers was achieved through the polymerization of hexyl isocyanate and 4-phenylbutyl isocyanate, initiated by an exo-norbornene functionalized half-titanocene complex. Sequential ruthenium-mediated ring-opening metathesis polymerization of these macromonomers readily afforded well-defined brush block copolymers, with precisely tunable molecular weights ranging from high (1512 kDa) to ultrahigh (7119 kDa), while maintaining narrow molecular weight distributions (PDI = 1.08-1.

View Article and Find Full Text PDF

Acrylated glyphosate was blended into a model polyolacrylate formulation and copolymerized. The resulting copolymer retains herbicidal activity similar to that of the monomer as indicated by the results of biological tests. No release of biocide from the coating was observed.

View Article and Find Full Text PDF

The synthesis of new acrylate and methacrylate derivatives of a glyphosate is reported. Two isomers resulting from a hindered rotation around the amide C--N bond are observed for both acrylic and methacrylic analogs, and barriers for internal rotation are obtained. Biological activity tests indicate that functionalized glyphosates possess herbicidal activity similar to that of the parent compound.

View Article and Find Full Text PDF