The sulfur-containing salts, classified as food additives, sodium metabisulfite (SMBS), potassium metabisulfite (PMBS), aluminum sulfate (AlS), and aluminum potassium sulfate (AlPS), were evaluated for their activity against , , and , the most economically important fungal pathogens causing postharvest disease of stone fruit. In in vitro tests with potato dextrose agar (PDA) Petri dishes amended with different concentrations of the salts (0, 10, 20, 30, 50, and 100 mM), SMBS and PMBS at all concentrations, AlS above 20 mM, and AlPS above 30 mM, completely inhibited the mycelial growth of the three fungi after incubation at 25 °C for up to 10 days. In in vivo primary screenings with artificially inoculated nectarines, aqueous solutions of the four salts reduced the incidence and severity of brown rot (BR) at concentrations of 10 and 50 mM, whereas only AlS and AlPS reduced Rhizopus rot (RR), and none of the salts was effective against sour rot (SR).
View Article and Find Full Text PDFBackground: Two edible coating (EC) emulsions based on potato starch (F6 and F10) alone or formulated with sodium benzoate (SB, 2% w/w) (F6/SB and F10/SB) were evaluated to maintain postharvest quality of cold-stored 'Fino' lemons and control sour rot on lemons artificially inoculated with Geotrichum citri-aurantii. Previous research showed the potential of these ECs to improve the storability of 'Orri' mandarins and reduce citrus green and blue molds caused by Penicillum digitatum and Penicillium italicum, respectively.
Results: The coatings F6/SB and F10/SB significantly reduced sour rot incidence and severity compared to uncoated control samples on lemons incubated at 28 °C for 4 and 7 days.
Sodium metabisulfite (SMBS), potassium metabisulfite (PMBS), aluminum sulfate (AlS) and aluminum potassium sulfate (AlPS), common sulfur-containing salts used as food additives, were evaluated for their antifungal activity against Penicillium digitatum, Penicillium italicum and Geotrichum citri-aurantii, the most economically important pathogens causing postharvest diseases of citrus fruits. In vitro radial mycelial growth was measured on potato dextrose agar (PDA) Petri dishes amended with five different concentrations of the salts (10, 20, 30, 50, 100 mM) after 7 d of incubation at 25 °C. SMBS and PMBS at all concentrations, and AIS and AIPS above 20 mM, completely inhibited the growth of these fungi.
View Article and Find Full Text PDFDelottococcus aberiae (De Lotto) (Hemiptera: Pseudococcidae) is the most recent species of mealybug introduced to Spain that is affecting citrus. The feeding behavior of D. aberiae causes severe direct damage to citrus fruits, distorting their shape and/or causing reduction in size.
View Article and Find Full Text PDFSeveral insect species pose a serious threat to different plant species, sometimes becoming a pest that produces significant damage to the landscape, biodiversity, and/or the economy. This is the case of Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae), Semanotus laurasii Lucas (Coleoptera: Cerambycidae), and Monochamus galloprovincialis Olivier (Coleoptera: Cerambycidae), which have become serious threats to ornamental and productive trees all over the world such as palm trees, cypresses, and pines. Knowledge about their flight potential is very important for designing and applying measures targeted to reduce the negative effects from these pests.
View Article and Find Full Text PDF