Publications by authors named "Victoria Margulets"

Aims: The mitochondrial dynamics protein Mitofusin 2 (MFN2) coordinates critical cellular processes including mitochondrial bioenergetics, quality control, and cell viability. The NF-κB kinase IKKβ suppresses mitochondrial injury in doxorubicin cardiomyopathy, but the underlying mechanism is undefined.

Methods And Results: Herein, we identify a novel signalling axis that functionally connects IKKβ and doxorubicin cardiomyopathy to a mechanism that impinges upon the proteasomal stabilization of MFN2.

View Article and Find Full Text PDF

Anthracyclines such as doxorubicin (Dox) are widely used to treat a variety of adult and childhood cancers, however, a major limitation to many of these compounds is their propensity for inducing heart failure. A naturally occurring polyphenolic compound such as Ellagic acid (EA) has been shown by our laboratory to mitigate the cardiotoxic effects of Dox, however, the effects of EA on cancer cell viability have not been established. In this study, we explored the effects of EA alone and in combination with Dox on cancer cell viability and tumorigenesis.

View Article and Find Full Text PDF

Background: Cytokines such as tumor necrosis factor-α (TNFα) have been implicated in cardiac dysfunction and toxicity associated with doxorubicin (DOX). Although TNFα can elicit different cellular responses, including survival or death, the mechanisms underlying these divergent outcomes in the heart remain cryptic. The E3 ubiquitin ligase TRAF2 (TNF receptor associated factor 2) provides a critical signaling platform for K63-linked polyubiquitination of RIPK1 (receptor interacting protein 1), crucial for nuclear factor-κB (NF-κB) activation by TNFα and survival.

View Article and Find Full Text PDF
Article Synopsis
  • Mitofusins are proteins on the outer mitochondrial membrane that help regulate the process of mitochondrial fusion, which is crucial for various cellular functions.
  • Researchers have discovered small molecules that can either enhance or inhibit the activity of mitofusins by altering their shape and ability to form complexes (oligomerization).
  • Inhibiting mitofusins not only reduces mitochondrial fusion and functionality but also leads to issues like mitochondrial membrane damage, activation of specific caspases, DNA damage, and an increase in genes related to the DNA damage response, highlighting their potential as drug targets for further studies.
View Article and Find Full Text PDF

Cardiac function is highly reliant on mitochondrial oxidative metabolism and quality control. The circadian gene is critically linked to vital physiological processes including mitochondrial fission, fusion and bioenergetics; however, little is known of how the gene regulates these vital processes in the heart. Herein, we identified a putative circadian CLOCK-mitochondrial interactome that gates an adaptive survival response during myocardial ischemia.

View Article and Find Full Text PDF

Doxorubicin remains an essential component of many cancer regimens, but its use is limited by lethal cardiomyopathy, which has been difficult to target, owing to pleiotropic mechanisms leading to apoptotic and necrotic cardiac cell death. Here we show that BAX is rate-limiting in doxorubicin-induced cardiomyopathy and identify a small-molecule BAX inhibitor that blocks both apoptosis and necrosis to prevent this syndrome. By allosterically inhibiting BAX conformational activation, this compound blocks BAX translocation to mitochondria, thereby abrogating both forms of cell death.

View Article and Find Full Text PDF

Aims: The chemotherapy drug doxorubicin (Dox) is commonly used for treating a variety of human cancers; however, it is highly cardiotoxic and induces heart failure. We previously reported that the Bcl-2 mitochondrial death protein Bcl-2/19kDa interaction protein 3 (Bnip3), is critical for provoking mitochondrial perturbations and necrotic cell death in response to Dox; however, the underlying mechanisms had not been elucidated. Herein, we investigated mechanism that drives Bnip3 gene activation and downstream effectors of Bnip3-mediated mitochondrial perturbations and cell death in cardiac myocytes treated with Dox.

View Article and Find Full Text PDF

Aims: Myocardial ischaemia followed by reperfusion (IR) causes an oxidative burst resulting in cellular dysfunction. Little is known about the impact of oxidative stress on cardiomyocyte lipids and their role in cardiac cell death. Our goal was to identify oxidized phosphatidylcholine-containing phospholipids (OxPL) generated during IR, and to determine their impact on cell viability and myocardial infarct size.

View Article and Find Full Text PDF

The Bcl-2 protein Bnip3 is crucial for provoking oxidative injury to mitochondria following anthracycline treatment or ischemia-reperfusion injury. Herein, we investigate the effects of the polyphenolic compound ellagic acid (EA) on Bnip3 mediated mitochondrial injury and necrotic cell death in cardiac myocytes. In contrast to vehicle treated cardiomyocytes, Bnip3 was highly enriched in mitochondrial fractions of cardiac myocytes treated with the anthracycline doxorubicin or in cells subjected to hypoxia (HPX).

View Article and Find Full Text PDF

Herein we describe a novel survival pathway that operationally links alternative pre-mRNA splicing of the hypoxia-inducible death protein Bcl-2 19-kD interacting protein 3 (Bnip3) to the unique glycolytic phenotype in cancer cells. While a full-length Bnip3 protein (Bnip3FL) encoded by exons 1-6 was expressed as an isoform in normal cells and promoted cell death, a truncated spliced variant of Bnip3 mRNA deleted for exon 3 (Bnip3Δex3) was preferentially expressed in several human adenocarcinomas and promoted survival. Reciprocal inhibition of the Bnip3Δex3/Bnip3FL isoform ratio by inhibiting pyruvate dehydrogenase kinase isoform 2 (PDK2) in Panc-1 cells rapidly induced mitochondrial perturbations and cell death.

View Article and Find Full Text PDF

Huntington's disease (HD) is a neurodegenerative disorder caused by the expansion of a CAG repeat in the IT15 gene that encodes the protein huntingtin (htt). Evidence shows that mutant htt causes mitochondrial depolarization and fragmentation, but the underlying molecular mechanism has yet to be clarified. Bax/Bak and BNip3 are pro-apoptotic members of the Bcl-2 family protein whose activation triggers mitochondrial depolarization and fragmentation inducing cell death.

View Article and Find Full Text PDF

Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19 kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts.

View Article and Find Full Text PDF

Myocardial ischemia and angiotensin II activate the tumor suppressor p53 protein, which promotes cell death. Previously, we showed that the Bcl-2 death gene Bnip3 is highly induced during ischemia, where it triggers mitochondrial perturbations resulting in autophagy and cell death. However, whether p53 regulates Bnip3 and autophagy is unknown.

View Article and Find Full Text PDF

Background: Tumor necrosis factor-α and other proinflammatory cytokines activate the canonical nuclear factor (NF)-κB pathway through the kinase IKKβ. Previously, we established that IKKβ is also critical for Akt-mediated NF-κB activation in ventricular myocytes. Akt activates the kinase mammalian target of rapamycin (mTOR), which mediates important processes such as cardiac hypertrophy.

View Article and Find Full Text PDF

Alongside their contribution to research, human embryonic stem cells (hESC) may also prove valuable for cell-based therapies. Traditionally, these cells have been grown in adhesion culture either with or without feeder cells, allowing for their continuous growth as undifferentiated cells. However, to be applicable in therapy and industry they must be produced in a scalable and controlled process.

View Article and Find Full Text PDF