Long noncoding (lnc)RNAs emerge as regulators of genome stability. The nuclear-enriched abundant transcript 1 (NEAT1) is overexpressed in many tumors and is responsive to genotoxic stress. However, the mechanism that links NEAT1 to DNA damage response (DDR) is unclear.
View Article and Find Full Text PDFRNA-binding proteins are frequently deregulated in cancer and emerge as effectors of the DNA damage response (DDR). The non-POU domain-containing octamer-binding protein NONO/p54 is a multifunctional RNA-binding protein that not only modulates the production and processing of mRNA, but also promotes the repair of DNA double-strand breaks (DSBs). Here, we investigate the impact of deletion in the murine KP ( , ) cell-based lung cancer model.
View Article and Find Full Text PDFRNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54nrb marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood.
View Article and Find Full Text PDFPopulation density is known to affect the health and survival of many species, and is especially important for social animals. In mice, living in crowded conditions results in the disruption of social interactions, chronic stress, and immune and reproductive suppression; however, the underlying mechanisms remain unclear. Here, we investigated the role of chemosignals in the regulation of mouse physiology and behavior in response to social crowding.
View Article and Find Full Text PDFCellular stress can induce DNA lesions that threaten the stability of genes. The DNA damage response (DDR) recognises and repairs broken DNA to maintain genome stability. Intriguingly, components of nuclear paraspeckles like the non-POU domain containing octamer-binding protein (NONO) participate in the repair of DNA double-strand breaks (DSBs).
View Article and Find Full Text PDFThe nuclear paraspeckle assembly transcript 1 (NEAT1) locus encodes two long non-coding (lnc)RNA isoforms that are upregulated in many tumours and dynamically expressed in response to stress. NEAT1 transcripts form ribonucleoprotein complexes with numerous RNA-binding proteins (RBPs) to assemble paraspeckles and modulate the localisation and activity of gene regulatory enzymes as well as a subset of messenger (m)RNA transcripts. The investigation of the dynamic composition of NEAT1-associated proteins and mRNAs is critical to understand the function of NEAT1.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2021
The SET domain containing lysine-specific methyltransferase, Set7/9, covalently attaches methyl moieties to a variety of histone and non-histone substrates. Among the substrates of Set7/9 are: p53, NF-kB, PARP1, E2F1, and other transcription factors that regulate many vital processes in the cell. Through the post-translational regulation of these critical master-regulators Set7/9 is involved in regulation of cell proliferation, cancer progression, and DNA damage response.
View Article and Find Full Text PDFGene expression is an essential process for cellular growth, proliferation, and differentiation. The transcription of protein-coding genes and non-coding loci depends on RNA polymerases. Interestingly, numerous loci encode long non-coding (lnc)RNA transcripts that are transcribed by RNA polymerase II (RNAPII) and fine-tune the RNA metabolism.
View Article and Find Full Text PDF