Recently, dimethyl fumarate (DMF) and Korean red ginseng (ginseng), based on their purported antioxidative and anti-inflammatory properties, have exhibited protective potential in various neurological conditions. Their effects on cerebral ischemia and underlying mechanisms remain inconclusive; however, increasing evidence indicates the involvement of the transcriptional factor Nrf2. This study evaluated the preventive effects of DMF and ginseng on hippocampal neuronal damage following hypoxia-ischemia (HI) and assessed the contributions of reactive gliosis and the Nrf2 pathway.
View Article and Find Full Text PDFThe transcriptional factor Nrf2, a master regulator of oxidative stress and inflammation that are tightly linked to the development and progression of cerebral ischemia pathology, plays a vital role in inducing the endogenous neuroprotective process. Here, hypoxic-ischemia (HI) was performed in adult Nrf2 knockout and wildtype mice that were orally pretreated either with standardized Korean red ginseng extract (Ginseng) or dimethyl fumarate (DMF), two candidate Nrf2 inducers, to determine whether the putative protection was through an Nrf2-dependent mechanism involving the attenuation of reactive gliosis. Results show that Nrf2 target cytoprotective genes were distinctly elevated following HI.
View Article and Find Full Text PDFEndogenous neuroprotective mechanisms by which the brain protects itself against noxious stimuli and recovers from ischemic damage are key targets of stroke research, ultimately facilitating functional recovery. Transcriptional factor Nrf2, enriched in astrocytes, is a master regulator of endogenous defense systems against oxidative stress and inflammation. Korean Red Ginseng (Ginseng), one most widely used herbal medicine, has exhibited promising potentials in neuroprotection.
View Article and Find Full Text PDFBackground: While age and the APOE ε4 allele are major risk factors for Alzheimer's disease (AD), a small percentage of individuals with these risk factors exhibit AD resilience by living well beyond 75 years of age without any clinical symptoms of cognitive decline.
Methods: We used over 200 "AD resilient" individuals and an innovative, pedigree-based approach to identify genetic variants that segregate with AD resilience. First, we performed linkage analyses in pedigrees with resilient individuals and a statistical excess of AD deaths.