Publications by authors named "Victoria Lessoway"

Introduction: Placenta-mediated diseases are associated with structural changes in the placenta. Quantitative Ultrasound (QUS) imaging measures the acoustic properties of the tissue, which are correlated to the underlying tissue structure. We aimed to develop and validate a diagnostic prediction model using QUS measurements for pre-eclampsia (PE) and small-for-gestational-age (SGA) fetuses/neonates.

View Article and Find Full Text PDF

Purpose: Length and width measurements of the kidneys aid in the detection and monitoring of structural abnormalities and organ disease. Manual measurement results in intra- and inter-rater variability, is complex and time-consuming, and is fraught with error. We propose an automated approach based on machine learning for quantifying kidney dimensions from two-dimensional (2D) ultrasound images in both native and transplanted kidneys.

View Article and Find Full Text PDF

Objective: Modelling ultrasound speckle to characterise tissue properties has generated considerable interest. As speckle is dependent on the underlying tissue architecture, modelling it may aid in tasks such as segmentation or disease detection. For the transplanted kidney, where ultrasound is used to investigate dysfunction, it is unknown which statistical distribution best characterises such speckle.

View Article and Find Full Text PDF

Pregnancy complications such as pre-eclampsia (PE) and intrauterine growth restriction (IUGR) are associated with structural and functional changes in the placenta. Different elastography techniques with an ability to assess the mechanical properties of tissue can identify and monitor the pathological state of the placenta. Currently available elastography techniques have been used with promising results to detect placenta abnormalities; however, limitations include inadequate measurement depth and safety concerns from high negative pressure pulses.

View Article and Find Full Text PDF

Development of non-invasive and placenta imaging techniques can potentially identify biomarkers of placental health. Correlative imaging using multiple multiscale modalities is particularly important to advance the understanding of placenta structure, function and their relationship. The objective of the project SWAVE 2.

View Article and Find Full Text PDF

Purpose: Optimizing patient position and needle puncture site are important factors for successful neuraxial anesthesia. Two paramedian approaches are commonly utilized and we sought to determine whether variations of the seated position would increase the chance of puncture success.

Methods: We simulated paramedian needle passes on three-dimensional lumbar spine models registered to volumetric ultrasound data acquired from ten healthy volunteers in three different positions: 1) prone; 2) seated with thoracic and lumbar flexion; and 3) seated as in position 2, but with a 10° dorsal tilt.

View Article and Find Full Text PDF

Patient positioning and needle puncture site are important for lumbar neuraxial anesthesia. We sought to identify optimal patient positioning and puncture sites with a novel ultrasound registration. We registered a statistical model to volumetric ultrasound data acquired from volunteers (n = 10) in three positions: (i) prone; (ii) seated with thoracic and lumbar flexion; and (iii) seated as in position ii, with a 10° dorsal tilt.

View Article and Find Full Text PDF

Accurate identification of the needle target is crucial for effective epidural anesthesia. Currently, epidural needle placement is administered by a manual technique, relying on the sense of feel, which has a significant failure rate. Moreover, misleading the needle may lead to inadequate anesthesia, post dural puncture headaches, and other potential complications.

View Article and Find Full Text PDF

Purpose: Percutaneous spinal needle insertion procedures often require proper identification of the vertebral level to effectively and safely deliver analgesic agents. The current clinical method involves "blind" identification of the vertebral level through manual palpation of the spine, which has only 30% reported accuracy. Therefore, there is a need for better anatomical identification prior to needle insertion.

View Article and Find Full Text PDF

Purpose: Epidural and spinal needle insertions, as well as facet joint denervation and injections are widely performed procedures on the lumbar spine for delivering anesthesia and analgesia. Ultrasound (US)-based approaches have gained popularity for accurate needle placement, as they use a non-ionizing, inexpensive and accessible modality for guiding these procedures. However, due to the inherent difficulties in interpreting spinal US, they yet to become the clinical standard-of-care.

View Article and Find Full Text PDF

We propose a novel learning-based approach to detect an imperceptible hand-held needle in ultrasound images using the natural tremor motion. The minute tremor induced on the needle however is also transferred to the tissue in contact with the needle, making the accurate needle detection a challenging task. The proposed learning-based framework is based on temporal analysis of the phase variations of pixels to classify them according to the motion characteristics.

View Article and Find Full Text PDF

Spinal needle injections are guided by fluoroscopy or palpation, resulting in radiation exposure and/or multiple needle re-insertions. Consequently, guiding these procedures with live ultrasound has become more popular, but images are still challenging to interpret. We introduce a guidance system based on augmentation of ultrasound images with a patient-specific 3-D surface model of the lumbar spine.

View Article and Find Full Text PDF

Purpose: Facet joint injections and epidural needle insertions are widely used for spine anesthesia. Accurate needle placement is important for effective therapy delivery and avoiding complications arising from damage of soft tissue and nerves. Needle guidance is usually performed by fluoroscopy or palpation, resulting in radiation exposure and multiple needle re-insertions.

View Article and Find Full Text PDF

Purpose: Volar percutaneous scaphoid fracture fixation is conventionally performed under fluoroscopy-based guidance, where surgeons need to mentally determine a trajectory for the insertion of the screw and its depth based on a series of 2D projection images. In addition to challenges associated with mapping 2D information to a 3D space, the process involves exposure to ionizing radiation. Three-dimensional ultrasound has been suggested as an alternative imaging tool for this procedure; however, it has not yet been integrated into clinical routine since ultrasound only provides a limited view of the scaphoid and its surrounding anatomy.

View Article and Find Full Text PDF

Purpose: Spinal needle injections are widely applied to alleviate back pain and for anesthesia. Current treatment is performed either blindly with palpation or using fluoroscopy or computed tomography (CT). Both fluoroscopy and CT guidance expose patients to ionizing radiation.

View Article and Find Full Text PDF

Purpose: Facet joint injections of analgesic agents are widely used to treat patients with lower back pain. The current standard-of-care for guiding the injection is fluoroscopy, which exposes the patient and physician to significant radiation. As an alternative, several ultrasound guidance systems have been proposed, but have not become the standard-of-care, mainly because of the difficulty in image interpretation by the anesthesiologist unfamiliar with the complex spinal sonography.

View Article and Find Full Text PDF

Purpose: Injection therapy is a commonly used solution for back pain management. This procedure typically involves percutaneous insertion of a needle between or around the vertebrae, to deliver anesthetics near nerve bundles. Most frequently, spinal injections are performed either blindly using palpation or under the guidance of fluoroscopy or computed tomography.

View Article and Find Full Text PDF

Despite the common use of epidural anesthesia in obstetrics and surgery, the procedure can be challenging, especially for obese patients. We propose the use of an ultrasound guidance system employing a transducer-mounted camera to create 3-D panorama ultrasound volumes of the spine, thereby allowing identification of vertebrae and selection of puncture site, needle trajectory and depth of insertion. The camera achieves absolute position estimation of the transducer with respect to the patient using a specialized marker strip attached to the skin surface.

View Article and Find Full Text PDF

Described here is a novel approach to needle localization in 3-D ultrasound based on automatic detection of small changes in appearance on movement of the needle stylus. By stylus oscillation, including its full insertion into the cannula to the tip, the image processing techniques can localize the needle trajectory and the tip in the 3-D ultrasound volume. The 3-D needle localization task is reduced to two 2-D localizations using orthogonal projections.

View Article and Find Full Text PDF

Purpose: Epidural needle insertions and facet joint injections play an important role in spine anaesthesia. The main challenge of safe needle insertion is the deep location of the target, resulting in a narrow and small insertion channel close to sensitive anatomy. Recent approaches utilizing ultrasound (US) as a low-cost and widely available guiding modality are promising but have yet to become routinely used in clinical practice due to the difficulty in interpreting US images, their limited view of the internal anatomy of the spine, and/or inclusion of cost-intensive tracking hardware which impacts the clinical workflow.

View Article and Find Full Text PDF

Purpose: The scaphoid bone is the most frequently fractured bone in the wrist. When fracture fixation is indicated, a screw is inserted into the bone either in an open surgical procedure or percutaneously under fluoroscopic guidance. Due to the complex geometry of the wrist, fracture fixation is a challenging task.

View Article and Find Full Text PDF

We propose an augmented reality system to identify lumbar vertebral levels to assist in spinal needle insertion for epidural anesthesia. These procedures require careful placement of a needle to ensure effective delivery of anesthetics and to avoid damaging sensitive tissue such as nerves. In this system, a trinocular camera tracks an ultrasound transducer during the acquisition of a sequence of B-mode images.

View Article and Find Full Text PDF

Purpose: Spinal needle injection procedures are used for anesthesia and analgesia, such as lumbar epidurals. These procedures require careful placement of a needle, both to ensure effective therapy delivery and to avoid damaging sensitive tissue such as the spinal cord. An important step in such procedures is the accurate identification of the vertebral levels, which is currently performed using manual palpation with a reported 30% success rate for correct identification.

View Article and Find Full Text PDF

Background: Ultrasound has been shown to facilitate accurate identification of the intervertebral level and to predict skin-to-epidural depth in the lumbar epidural space with reliable precision. We hypothesized that we could accurately predict the skin-to-epidural depth and the intervertebral level in the thoracic spine with the use of ultrasound.

Methods: Twenty patients presenting for thoracic surgery were included in a feasibility study.

View Article and Find Full Text PDF

Purpose: In conventional practice of epidural needle placement, determining the interspinous level and choosing the puncture site are based on palpation of anatomical landmarks, which can be difficult with some subjects. Thereafter, the correct passage of the needle towards the epidural space is a blind "feel as you go" method. An aim-and-insert single-operator ultrasound-guided epidural needle placement is described and demonstrated.

View Article and Find Full Text PDF