Publications by authors named "Victoria L Castro"

Mutation of the GABRA1 gene is associated with neurodevelopmental defects and epilepsy. GABRA1 encodes for the α1 subunit of the γ-aminobutyric acid type A receptor (GABAR), which regulates the fast inhibitory impulses of the nervous system. Multiple model systems have been developed to understand the function of GABRA1, but these models have produced complex and, at times, incongruent data.

View Article and Find Full Text PDF

Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described.

View Article and Find Full Text PDF

Mutations in the HCFC1 transcriptional co-factor protein are the cause of cblX syndrome and X-linked intellectual disability (XLID). cblX is the more severe disorder associated with intractable epilepsy, abnormal cobalamin metabolism, facial dysmorphia, cortical gyral malformations, and intellectual disability. In vitro, murine Hcfc1 regulates neural precursor (NPCs) proliferation and number, which has been validated in zebrafish.

View Article and Find Full Text PDF

Mutation of the gene is associated with neurodevelopmental defects and epilepsy. encodes for the α1 subunit of the gamma-aminobutyric acid type A receptor (GABAR), which regulates the fast inhibitory impulses of the nervous system. Multiple model systems have previously been developed to understand the function of during development, but these models have produced complex and at times incongruent data.

View Article and Find Full Text PDF

Variants in the gene cause combined methylmalonic acidemia and homocystinuria type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described.

View Article and Find Full Text PDF

Mutations in the gene are associated with cases of syndromic () and non-syndromic intellectual disability. Syndromic individuals present with severe neurological defects including intractable epilepsy, facial dysmorphia, and intellectual disability. Non-syndromic individuals have also been described and implicate a role for HCFC1 during brain development.

View Article and Find Full Text PDF

Inborn errors of cholesterol metabolism occur as a result of mutations in the cholesterol synthesis pathway (CSP). Although mutations in the CSP cause a multiple congenital anomaly syndrome, craniofacial abnormalities are a hallmark phenotype associated with these disorders. Previous studies have established that mutation of the zebrafish hmgcs1 gene (Vu57 allele), which encodes the first enzyme in the CSP, causes defects in craniofacial development and abnormal neural crest cell (NCC) differentiation.

View Article and Find Full Text PDF

Background: Precise regulation of neural precursor cell (NPC) proliferation and differentiation is essential to ensure proper brain development and function. The HCFC1 gene encodes a transcriptional co-factor that regulates cell proliferation, and previous studies suggest that HCFC1 regulates NPC number and differentiation. However, the molecular mechanism underlying these cellular deficits has not been completely characterized.

View Article and Find Full Text PDF

Erythropoiesis is the process by which new red blood cells (RBCs) are formed and defects in this process can lead to anemia or thalassemia. The GATA1 transcription factor is an established mediator of RBC development. However, the upstream mechanisms that regulate the expression of are not completely characterized.

View Article and Find Full Text PDF

CblX (MIM309541) is an X-linked recessive disorder characterized by defects in cobalamin (vitamin B12) metabolism and other developmental defects. Mutations in HCFC1, a transcriptional co-regulator which interacts with multiple transcription factors, have been associated with cblX. HCFC1 regulates cobalamin metabolism via the regulation of MMACHC expression through its interaction with THAP11, a THAP domain-containing transcription factor.

View Article and Find Full Text PDF