This review presents a simple trigger-substrate model of arrhythmogenesis and its application to the generation of reentrant ventricular arrhythmias. We demonstrate its broad applicability to the understanding of arrhythmic phenomena in a wide range of both hereditary and acquired arrhythmic disorders.
View Article and Find Full Text PDFThe relationship between alternans and arrhythmogenicity was studied in genetically modified murine hearts modeling catecholaminergic polymorphic ventricular tachycardia (CPVT) during Langendorff perfusion, before and after treatment with catecholamines and a β-adrenergic antagonist. Heterozygous (RyR2(p/s)) and homozygous (RyR2(s/s)) RyR2-P2328S hearts, and wild-type (WT) controls, were studied before and after treatment with epinephrine (100 nM and 1 μM) and propranolol (100 nM). Monophasic action potential recordings demonstrated significantly greater incidences of arrhythmia in RyR2(p/s) and RyR2(s/s) hearts as compared to WTs.
View Article and Find Full Text PDFThe experiments investigated the applicability of two established criteria for arrhythmogenicity in Scn5a+/Delta and Scn5a+/- murine hearts modelling the congenital long QT syndrome type 3 (LQT3) and the Brugada syndrome (BrS). Monophasic action potentials (APs) recorded during extrasystolic stimulation procedures from Langendorff-perfused control hearts and hearts treated with flecainide (1 microM) or quinidine (1 or 10 microM) demonstrated that both agents were pro-arrhythmic in wild-type (WT) hearts, quinidine was pro-arrhythmic in Scn5a+/Delta hearts, and that flecainide was pro-arrhythmic whereas quinidine was anti-arrhythmic in Scn5a+/- hearts, confirming clinical findings. Statistical analysis confirmed a quadratic relationship between epicardial and endocardial AP durations (APDs) in WT control hearts.
View Article and Find Full Text PDF