Publications by authors named "Victoria J H Ritvo"

Article Synopsis
  • * After this "neural sculpting," participants showed specific behavioral and neural responses to the newly learned visual categories compared to control ones.
  • * This method not only enhances our understanding of visual perception but could also have implications for research in other cognitive areas like decision-making and memory.
View Article and Find Full Text PDF

What determines when neural representations of memories move together (integrate) or apart (differentiate)? Classic supervised learning models posit that, when two stimuli predict similar outcomes, their representations should integrate. However, these models have recently been challenged by studies showing that pairing two stimuli with a shared associate can sometimes cause differentiation, depending on the parameters of the study and the brain region being examined. Here, we provide a purely unsupervised neural network model that can explain these and other related findings.

View Article and Find Full Text PDF

What determines when neural representations of memories move together (integrate) or apart (differentiate)? Classic supervised learning models posit that, when two stimuli predict similar outcomes, their representations should integrate. However, these models have recently been challenged by studies showing that pairing two stimuli with a shared associate can sometimes cause differentiation, depending on the parameters of the study and the brain region being examined. Here, we provide a purely unsupervised neural network model that can explain these and other related findings.

View Article and Find Full Text PDF

What are the principles that govern whether neural representations move apart (differentiate) or together (integrate) as a function of learning? According to supervised learning models that are trained to predict outcomes in the world, integration should occur when two stimuli predict the same outcome. Numerous findings support this, but - paradoxically - some recent fMRI studies have found that pairing different stimuli with the same associate causes differentiation, not integration. To explain these and related findings, we argue that supervised learning needs to be supplemented with unsupervised learning that is driven by spreading activation in a U-shaped way, such that inactive memories are not modified, moderate activation of memories causes weakening (leading to differentiation), and higher activation causes strengthening (leading to integration).

View Article and Find Full Text PDF