Tick-borne encephalitis virus (TBEV) and Powassan virus (POWV) are neurotropic tick-borne orthoflaviviruses. They cause mostly asymptomatic infections in hosts, but severe forms with CNS involvement can occur. Studying the early stages of viral infections in humans is challenging, and appropriate animal models are essential for understanding the factors determining the disease severity and for developing emergency prophylaxis and treatment options.
View Article and Find Full Text PDFThe unprecedented in recent history global COVID-19 pandemic urged the implementation of all existing vaccine platforms to ensure the availability of the vaccines against COVID-19 to every country in the world. Despite the multitude of high-quality papers describing clinical trials of different vaccine products, basic detailed data on general toxicity, reproductive toxicity, immunogenicity, protective efficacy and durability of immune response in animal models are scarce. Here, we developed a β-propiolactone-inactivated whole virion vaccine CoviVac and assessed its safety, protective efficacy, immunogenicity and stability of the immune response in rodents and non-human primates.
View Article and Find Full Text PDFCurrently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures.
View Article and Find Full Text PDFA series of inhibitors of plant enzymes of the non-mevalonate pathway from herbicide research efforts at BASF were screened for antimalarial activity in a cell-based assay. A 1,3-diiminoisoindoline carbohydrazide was found to inhibit the growth of Plasmodium falciparum with an IC(50) value <100 nM. Synthesis of a variety of derivatives allowed an improvement of the initial antimalarial activity down to IC(50) =18 nM for the most potent compound, the establishment of a structure-activity relationship, and the evaluation of the cytotoxic profile of the diiminoisoindolines.
View Article and Find Full Text PDFReverse hydroxamate-based inhibitors of IspC, a key enzyme of the non-mevalonate pathway of isoprenoid biosynthesis and a validated antimalarial target, were synthesized and biologically evaluated. The binding mode of one derivative in complex with EcIspC and a divalent metal ion was clarified by X-ray analysis. Pilot experiments have demonstrated in vivo potential.
View Article and Find Full Text PDFA library of 40,000 compounds was screened for inhibitors of 2-methylerythritol 2,4-cyclodiphosphate synthase (IspF) protein from Arabidopsis thaliana using a photometric assay. A thiazolopyrimidine derivative resulting from the high-throughput screen was found to inhibit the IspF proteins of Mycobacterium tuberculosis, Plasmodium falciparum, and A. thaliana with IC(50) values in the micromolar range.
View Article and Find Full Text PDF2C-Methyl-D-erythritol-4-phosphate synthase, encoded by the ispC gene (also designated dxr), catalyzes the first committed step in the nonmevalonate isoprenoid biosynthetic pathway. The reaction involves the isomerization of 1-deoxy-D-xylulose 5-phosphate, giving a branched-chain aldose derivative that is subsequently reduced to 2C-methyl-D-erythritol 4-phosphate. The isomerization step has been proposed to proceed as an intramolecular rearrangement or a retroaldol-aldol sequence.
View Article and Find Full Text PDFThe intensely fluorescent lumazine protein is believed to be involved in the bioluminescence of certain marine bacteria. The sequence of the catalytically inactive protein resembles that of the enzyme riboflavin synthase. Its non-covalently bound fluorophore, 6,7-dimethyl-8-ribityllumazine, is the substrate of this enzyme and also the committed precursor of vitamin B(2).
View Article and Find Full Text PDF4-Diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE) catalyses the ATP-dependent conversion of 4-diphosphocytidyl-2C-methyl-D-erythritol (CDPME) to 4-diphosphocytidyl-2C-methyl-d-erythritol 2-phosphate with the release of ADP. This reaction occurs in the non-mevalonate pathway of isoprenoid precursor biosynthesis and because it is essential in important microbial pathogens and absent from mammals it represents a potential target for anti-infective drugs. We set out to characterize the biochemical properties, determinants of molecular recognition and reactivity of IspE and report the cloning and purification of recombinant Aquifex aeolicus IspE (AaIspE), kinetic data, metal ion, temperature and pH dependence, crystallization and structure determination of the enzyme in complex with CDP, CDPME and ADP.
View Article and Find Full Text PDFThe enzymes of the non-mevalonate pathway for isoprenoid biosynthesis are attractive targets for the development of novel drugs against malaria and tuberculosis. This pathway is used exclusively by the corresponding pathogens, but not by humans. A series of water-soluble, cytidine-based inhibitors that were originally designed for the fourth enzyme in the pathway, IspD, were shown to inhibit the subsequent enzyme, the kinase IspE (from Escherichia coli).
View Article and Find Full Text PDFThe nonmevalonate isoprenoid pathway is an established target for antiinfective drug development. This paper describes high-throughput methods for the screening of 2C-methyl-D-erythritol synthase (IspC protein), 4-diphosphocytidyl-2C-methyl-D-erythritol synthase (IspD protein), 4-diphosphocytidyl-2C-methyl-D-erythritol kinase (IspE protein), and 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF protein) against large compound libraries. The assays use up to three auxiliary enzymes.
View Article and Find Full Text PDFDihydroneopterin aldolase (DHNA) catalyses a retroaldol reaction yielding 6-hydroxymethyl-7,8-dihydropterin, a biosynthetic precursor of the vitamin, tetrahydrofolate. The enzyme is a potential target for antimicrobial and anti-parasite chemotherapy. A gene specifying a dihydroneopterin aldolase from Arabidopsis thaliana was expressed in a recombinant Escherichia coli strain.
View Article and Find Full Text PDF7,8-Dihydroneopterin aldolase catalyzes the formation of the tetrahydrofolate precursor, 6-hydroxymethyl-7,8-dihydropterin, and is a potential target for antimicrobial and anti-parasite chemotherapy. The last step of the enzyme-catalyzed reaction is believed to involve the protonation of an enol type intermediate. In order to study the stereochemical course of that reaction step, [1',2',3',6,7-13C5]dihydroneopterin was treated with aldolase in deuterated buffer.
View Article and Find Full Text PDF