Objective: Pediatric rheumatology faces a looming supply-demand crisis. While strategies have been proposed to address the supply shortfall, investigation into the increased demand for pediatric rheumatic care has been limited. Herein, we analyze new patient visits to a large tertiary care pediatric rheumatology center to identify emerging trends in referrals and areas for potential intervention to meet this increased demand.
View Article and Find Full Text PDFThe SAGA coactivator complex is essential for eukaryotic transcription and comprises four distinct modules, one of which contains the ubiquitin hydrolase USP22. In yeast, the USP22 ortholog deubiquitylates H2B, resulting in Pol II Ser2 phosphorylation and subsequent transcriptional elongation. In contrast to this H2B-associated role in transcription, we report here that human USP22 contributes to the early stages of stimulus-responsive transcription, where USP22 is required for pre-initiation complex (PIC) stability.
View Article and Find Full Text PDFBackground: The oncoprotein MYC has the dual capacity to drive cell cycle progression or induce apoptosis, depending on the cellular context. BAG1 was previously identified as a transcriptional target of MYC that functions as a critical determinant of this cell fate decision. The BAG1 protein is expressed as multiple isoforms, each having an array of distinct biochemical functions; however, the specific effector function of BAG1 that directs MYC-dependent cell survival has not been defined.
View Article and Find Full Text PDFOverexpression of the deubiquitylase ubiquitin-specific peptidase 22 (USP22) is a marker of aggressive cancer phenotypes like metastasis, therapy resistance, and poor survival. Functionally, this overexpression of USP22 actively contributes to tumorigenesis, as USP22 depletion blocks cancer cell cycle progression in vitro, and inhibits tumor progression in animal models of lung, breast, bladder, ovarian, and liver cancer, among others. Current models suggest that USP22 mediates these biological effects via its role in epigenetic regulation as a subunit of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional cofactor complex.
View Article and Find Full Text PDFThe unfolded protein response (UPR) is a stress-activated signalling pathway that regulates cell proliferation, metabolism and survival. The circadian clock coordinates metabolism and signal transduction with light/dark cycles. We explore how UPR signalling interfaces with the circadian clock.
View Article and Find Full Text PDFDespite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis.
View Article and Find Full Text PDFAnn Clin Transl Neurol
December 2014
Objective: Research identified promising therapeutics in cell models of Amyotrophic Lateral Sclerosis (ALS), but there is limited progress translating effective treatments to animal models and patients, and ALS remains a disease with no effective treatment. One explanation stems from an acquired pharmacoresistance driven by the drug efflux transporters P-glycoprotein (P-gp) and breast cancer-resistant protein (BCRP), which we have shown are selectively upregulated at the blood-brain and spinal cord barrier (BBB/BSCB) in ALS mice and patients. Pharmacoresistance is well appreciated in other brain diseases, but overlooked in ALS despite many failures in clinical trials.
View Article and Find Full Text PDF