Publications by authors named "Victoria G Dumas"

Determination of the free energy profile for an enzyme reaction mechanism is of primordial relevance, paving the way for our understanding of the enzyme's catalytic power at the molecular level. Although hybrid, mostly DFT-based, QM/MM methods have been extensively applied to this type of studies, achieving accurate and statistically converged results at a moderate computational cost is still an open challenge. Recently, we have shown that accurate results can be achieved in less computational time, combining Jarzynski's relationship with a hybrid differential relaxation algorithm (HyDRA), which allows partial relaxation of the solvent during the nonequilibrium steering of the reaction.

View Article and Find Full Text PDF

Motivation: Water molecules are key players for protein folding and function. On the protein surface, water is not placed randomly, but display instead a particular structure evidenced by the presence of specific water sites (WS). These WS can be derived and characterized using explicit water Molecular Dynamics simulations, providing useful information for ligand binding prediction and design.

View Article and Find Full Text PDF

Among 20 p450s of Mycobacterium tuberculosis (Mt), CYP121 has received an outstanding interest, not only due to its essentiality for bacterial viability but also because it catalyzes an unusual carbon-carbon coupling reaction. Based on the structure of the substrate bound enzyme, several reaction mechanisms were proposed involving first Tyr radical formation, second Tyr radical formation, and C-C coupling. Key and unknown features, being the nature of the species that generate the first and second radicals, and the role played by the protein scaffold each step.

View Article and Find Full Text PDF