Collective behaviour by eusocial insect colonies is typically achieved through multiple communication networks that produce complex behaviour at the group level but often appear to provide redundant or even competing information. A classic example occurs in honeybee (Apis mellifera) colonies, where both the dance communication system and robust scent-based mechanisms contribute to the allocation of a colony's workforce by regulating the flow of experienced foragers among known food sources. Here we analysed social connectivity patterns during the reactivation of experienced foragers to familiar feeding sites to show that these social information pathways are not simply multiple means to achieve the same end but intersect to play complementary roles in guiding forager behaviour.
View Article and Find Full Text PDFAcross the animal kingdom, newly independent juveniles form social associations that influence later fitness, mate choice and gene flow, but little is known about the ontogeny of social environments, particularly in wild populations. Here we test whether associations among young animals form randomly or are influenced by environmental or genetic conditions established by parents. Parents' decisions determine natal birth sites, which could affect who independent young initially encounter; secondly, mate choice determines genetic condition (e.
View Article and Find Full Text PDFEarly independence from parents is a critical period where social information acquired vertically may become outdated, or conflict with new information. However, across natural populations, it is unclear if newly independent young persist in using information from parents, or if group-level effects of conformity override previous behaviours. Here, we test if wild juvenile hihi (, a New Zealand passerine) retain a foraging behaviour from parents, or if they change in response to the behaviour of peers.
View Article and Find Full Text PDFBirds use cues when foraging to help relocate food resources, but natural environments provide many potential cues and choosing which to use may depend on previous experience. Young animals have less experience of their environment compared to adults, so may be slower to learn cues or may need to sample the environment more. Whether age influences cue use and learning has, however, received little experimental testing in wild animals.
View Article and Find Full Text PDFAlien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood.
View Article and Find Full Text PDF