Many nations use ecological compensation policies to address negative impacts of development projects and achieve No Net Loss (NNL) of biodiversity and ecosystem services. Yet, failures are widely reported. We use spatial simulation models to quantify potential net impacts of alternative compensation policies on biodiversity (indicated by native vegetation) and two ecosystem services (carbon storage, sediment retention) across four case studies (in Australia, Brazil, Indonesia, Mozambique).
View Article and Find Full Text PDFA global goal of no net loss of natural ecosystems or better has recently been proposed, but such a goal would require equitable translation to country-level contributions. Given the wide variation in ecosystem depletion, these could vary from net gain (for countries where restoration is needed), to managed net loss (in rare circumstances where natural ecosystems remain extensive and human development imperative is greatest). National contributions and international support for implementation also must consider non-area targets (for example, for threatened species) and socioeconomic factors such as the capacity to conserve and the imperative for human development.
View Article and Find Full Text PDFGovernments, businesses, and lenders worldwide are adopting an objective of no net loss (NNL) of biodiversity that is often partly achieved through biodiversity offsetting within a hierarchy of mitigation actions. Offsets aim to balance residual losses of biodiversity caused by development in one location with commensurate gains at another. Although ecological challenges to achieve NNL are debated, the associated gains and losses for local stakeholders have received less attention.
View Article and Find Full Text PDFUnderstanding adaptation by natural selection requires understanding the genetic factors that determine which beneficial mutations are available for selection. Here, using experimental evolution of rifampicin-resistant Pseudomonas aeruginosa, we show that different genotypes vary in their capacity for adaptation to the cost of antibiotic resistance. We then use sequence data to show that the beneficial mutations associated with fitness recovery were specific to particular genetic backgrounds, suggesting that genotypes had access to different sets of beneficial mutations.
View Article and Find Full Text PDF