Comprehensive two-dimensional liquid chromatography is used to separate anionic, nonionic, and amphoteric surfactants by substance class, alkyl chain distribution, and degree of ethoxylation. A nearly orthogonal system with a hydrophilic interaction chromatography (HILIC) phase in the first and a reversed-phase material in the second dimension is applied to generate a separation with maximum peak capacity. The potential of the developed method is demonstrated by the reproducibility of retention time and peak area, which shows standard deviations less than 5 % and the analysis of real samples.
View Article and Find Full Text PDFA simultaneous separation of anionic (fatty alcohol sulfates, fatty alcohol ether sulfates), non-ionic (alkyl polyglucosides, fatty alcohol ethoxylates) and amphoteric (cocamidopropyl betaines) surfactants was performed by comprehensive two-dimensional liquid chromatography (LCxLC) utilizing a ZIC(®)-HILIC column in the first dimension, a Reprosphere 100 C8-Aqua column in the second dimension and a 10-port two position valve as the interface. The volume of the two sample loops were 25 or 50 μL and allow a one or two minute modulation at a 25 μL/min flow rate. In the first dimension, a gradient of acetonitrile and an ammonium acetate buffer was used to separate polyethoxylated surfactants by their degree of ethoxylation (EO number) whereas in the second dimension, a separation by alkyl chain was performed using a methanol/ammonium acetate buffer gradient.
View Article and Find Full Text PDF