We have determined levels of glutathione (GSH), ATP, mitochondrial complex activity and apoptosis rate in proximal tubular cells (PTCs) exfoliated from urine in cystinotic (n=9) and control (n=9) children. Intracellular GSH was significantly depleted in cystinotic PTCs compared with controls (6.8 nmol GSH/mg protein vs 11.
View Article and Find Full Text PDFFree Radic Biol Med
February 2003
Excessive generation of nitric oxide (NO) has been implicated in the pathogenesis of several neurodegenerative disorders. Damage to the mitochondrial electron transport chain has also been implicated in these disorders. NO and its toxic metabolite peroxynitrite (ONOO(-)) can inhibit the mitochondrial respiratory chain, leading to energy failure and ultimately cell death.
View Article and Find Full Text PDFCultured rat and human astrocytes and rat neurones were shown to release reduced glutathione (GSH). In addition, GSH oxidation was retarded by the concomitant release of a factor from the cells. One possibility is that this factor is extracellular superoxide dismutase (SOD).
View Article and Find Full Text PDFManganese-salen complexes (Mn-Salen), including EUK-8 [manganese N,N'-bis(salicylidene)ethylenediamine chloride] and EUK-134 [manganese 3-methoxy N,N'-bis(salicylidene)ethylenediamine chloride], have been reported to possess combined superoxide dismutase (SOD) and catalase mimetic functions. Because of this SOD/catalase mimicry, EUK-8 and EUK-134 have been investigated as possible therapeutic agents in neurological disorders resulting from oxidative stress, including Alzheimer's disease, Parkinson's disease, stroke and multiple sclerosis. These actions have been explained by the ability of the Mn-Salen to remove deleterious superoxide (O(2)(-)) and H(2)O(2).
View Article and Find Full Text PDF