The exceptionally high virulence of the West Nile NY99 strain makes its suitability in the development of a live WN vaccine uncertain. The aim of this study is to investigate the immunogenicity of noninfectious virus derivatives carrying pseudolethal mutations, which preclude virion formation without affecting preceding steps of the viral infectious cycle. When administered using DNA immunization, such constructs initiate an infectious cycle but cannot lead to a viremia.
View Article and Find Full Text PDFRecently, we have described a lineage 2 attenuated WN virus suitable for the development of a live WN vaccine. To design vaccine candidates with an improved immunogenicity, we assembled an infectious clone of the NY99 strain and created several chimeric constructs with reciprocal exchanges of structural protein genes between attenuated W956 and virulent NY99 and investigated their biological properties. Our data indicated that, while the growth rates of NY99 and chimeric viruses in tissue culture are determined primarily by properties of the structural proteins, determinants responsible for a highly cytopathic phenotype of NY99 or lack thereof for W956 are located within the nonstructural protein region of the WN genome.
View Article and Find Full Text PDFSeven volunteers involved in flavivirus studies have been immunized with commercial Japanese encephalitis and yellow fever vaccines JE-VAX and YF-VAX. Strong homologous and cross-reactive with West Nile virus (WNV) antibody responses with titers 1:1600 to 1:51200 were found in all donors. All donors developed high levels of yellow fever virus (YFV) and Japanese encephalitis virus (JEV) neutralizing antibodies with titers 1:50 to 1:1600 and 1:20 to 1:640, respectively, and WNV neutralizing antibodies with titers 1:10 to 1:80.
View Article and Find Full Text PDFIn a short time, West Nile virus has developed into a nationwide health and veterinary problem. The high virulence of the circulating virus and related lineage 1 WN strains hinders development of an attenuated live vaccine. We describe an attenuated WN isolate, WN1415, which is a molecularly cloned descendant of the WN prototype B956 strain.
View Article and Find Full Text PDF