Amoebic gill disease (AGD) affects salmonids during the marine grow-out phase in the Tasmanian industry and in other major salmonid producing countries. During the period post-transfer to seawater, the bacterial condition yersiniosis can also cause high levels of mortality in Atlantic salmon grown in Tasmania, in addition to the hatchery outbreaks. The recombinant protein r22C03, a mannose-binding protein-like (MBP-like) similar to attachment factors of other amoebae, was tested as a vaccine candidate against AGD in a large scale challenge trial.
View Article and Find Full Text PDFAmoebic gill disease (AGD) is the main health problem for the salmon industry in Tasmania, Australia and is now reported in most salmon producing countries. Antibody and gene expression responses to the pathogen, Neoparamoeba perurans, have been studied independently following primary exposure; however, the effects of sequential reinfection, which can often occur during net-pen culture of salmon, remain unclear. The association between the transcription of immunoglobulin (Ig) and their systemic and mucosal antibody levels in regards to AGD is unknown.
View Article and Find Full Text PDFThe external surfaces of fish, such as gill and skin, are covered by mucus, which forms a thin interface between the organism and water. Amoebic gill disease (AGD) is a parasitic condition caused by Neoparamoeba perurans that affects salmonids worldwide. This disease induces excessive mucus production in the gills.
View Article and Find Full Text PDFThis study investigated the use of a recombinant protein of Neoparamoeba perurans, the causative agent of Amoebic gill disease (AGD), as an immunogen to generate systemic and mucosal antibody responses against the parasite. Genes encoding N. perurans homologs of mannose-binding protein (MBP) from Acanthamoeba spp.
View Article and Find Full Text PDFThis study aimed to assess systemic and mucosal immune responses of Atlantic salmon (Salmo salar) exposed to two protein-hapten antigens - dinitrophenol (DNP) and fluorescein isothiocyanate (FITC) each conjugated with keyhole limpet haemocyanin (KLH) - administered using different delivery strategies. Fish were exposed to the antigens through different routes, and were given a booster 4 weeks post initial exposure. Both systemic and mucosal antibody responses were measured for a period of 12 weeks using an enzyme-linked immunosorbent assay (ELISA).
View Article and Find Full Text PDF